[1] 宗群, 曾凡琳, 张希彬, 等. 高超声速飞行器建模与模型验证[M]. 北京:科学出版社, 2016. Zong Qun, Zeng Fanlin, Zhang Xibin, et al. Modeling and model validation of hypersonic vehicle[M]. Beijing:Science Press, 2016.
[2] Rodriguez A, Dickeson J, Cifdaloz O, et al. Modeling and control of sc-ramjet-powered hypersonic vehicles:Challenges, trends, and tradeoffs[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2008.
[3] McClinton R, Rausch V L, Shaw R J, et al. Hyper-X:Foundation for future hypersonic launch vehicles[J]. Acta Astronautica, 2005, 57(2):614-622.
[4] Fidan B, Mirmirani M, Ioannou P. Flight dynamics and control of airbreathing hypersonic vehicles:Review and new directions[C]//12th AIAA International Space Planes and Hypersonic Systems and Technol-ogies, Norfolk, Virginia, December 15-19, 2003.
[5] Hallion R. The History of Hypersonics:Or, ‘Back to the Future:Again and Again’[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 10-13, 2005.
[6] Thompson E, Keith H, Leslie W. Faster than a speeding bullet:Guin-ness recognizes NASA Scramjet[EB/OL].[2017-03-31]. https://www.nasa.gov/home/hqnews/2005/jun/HQ_05_156_X43A_Guinness.htm.
[7] Moses P, Rausch V, Nguyen L, et al. NASA hypersonic flight demon-strators overview, status, and future plans[J]. Acta Astronautica, 2004, 55(8):619-630.
[8] Fiorentini L. Nonlinear adaptive controller design for air-breathing hy-personic vehicles[D]. Columbus:The Ohio State University, 2010.
[9] Bolender M, Doman D. A non-linear model for the longitudinal dynam-ics of a hypersonic air-breathing vehicle[C]//AIAA Guidance, Naviga-tion, and Control Conference and Exhibit, San Francisco, California, Au-gust 15-18, 2006.
[10] Bolender A, Doman B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal Spacecraft and Rockets, 2007, 44(2):374-386.
[11] Oppenheimer W, Doman B. A hypersonic vehicle model developed with piston theory[C]//AIAA Atmospheric Flight Mechanics Confer-ence and Exhibit, Keystone, Colorado, August 21-24, 2006.
[12] Oppenheimer M, Skujins T, Bolender M, et al. A flexible hypersonic vehicle model developed with piston theory[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head, South Caroli-na, August 20-23, 2007.
[13] Oppenheime W, Doman B. Viscous effects for a hypersonic vehicle model[C]//AIAA Atmospheric Flight Mechanics Conference and Exhib-it, Honolulu, Hawaii, August 18-21, 2008.
[14] Oppenheimer W, Doman B, et al. Canard-elevon interactions on a hy-personic vehicle[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Honolulu, Hawaii, August 18-21, 2008.
[15] Bolender A, Oppenheimer W, Doman B. Effects of unsteady and vis-cous aerodynamics on the dynamics of a flexible air-breathing hyper-sonic vehicle[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head, South Carolina, August 20-23, 2007.
[16] Bolender A, Doman B. Modeling unsteady heating effects on the struc-tural dynamics of a hypersonic vehicle[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Keystone, Colorado, August 21-24, 2006.
[17] Williams T, Bolender A, Doman B. An aerothermal flexible mode anal-ysis of a hypersonic vehicle[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Keystone, Colorado, August 21-24, 2006.
[18] Culler J, Williams T, Bolender A. Aerothermal modeling and dynamic analysis of a hypersonic vehicle[C]//AIAA Atmospheric Flight Mechan-ics Conference and Exhibit, Hilton Head, South Carolina, August 20-23, 2007.
[19] Baumann E, Bahm C, Strovers B, et al. The X-43A six degree of free-dom monte carlo analysis[C]. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 7-10, 2008.
[20] Zong Q, You M, Zeng F L, et al. Aeroservoelastic modeling and analy-sis of a six-DOF hypersonic flight vehicle[J]. Proceedings of the Insti-tution of Mechanical Engineers, Part G:Journal of Aerospace Engi-neering, 2016, 230(7):1240-1251.
[21] Zhang X B, Zong Q. Modeling and analysis of an air-breathing flexi-ble hypersonic vehicle[J]. Mathematical Problems in Engineering, 2014, 2014(6):759-765.
[22] Zhang X B, Zong Q, Zeng F L. Effects of aeroelastic modes on the dy-namics of a flexible hypersonic vehicle[C]//The 25th Chinese control and Decision Conference, Guiyang, July 18, 2013.
[23] 张希彬, 宗群. 考虑气动-推进-弹性耦合的高超声速飞行器面向控制建模与分析[J]. 宇航学报, 2014, 35(5):528-536. Zhang Xibin, Zong Qun. Control-oriented modeling and analysis of a hypersonic vehicle with coupled[J]. Journal of Astronautics, 2014, 35(5):528-536.
[24] 张希彬, 宗群. 面向控制的弹性体高超声速飞行器建模与分析[J]. 控制与决策, 2014, 29(7):1205-1210. Zhang Xibin, Zong Qun. Control-oriented modeling and analysis of flexible hypersonic vehicle[J]. Control and Decision, 2014, 29(7):1205-1210.
[25] Keshmiri S, Mirmirani D, Colgren R. Six-DOF modeling and simula-tion of a generic hypersonic vehicle for conceptual design studies[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit, Providence, Rhode Island, August 16-19, 2004.
[26] Keshmiri S, Colgren R, Mirmirani D. Development of an aerodynamic database for a generic hypersonic air vehicle[C]//AIAA Guidance, Nav-igation, and Control Conference and Exhibit, San Francisco, Califor-nia, August 15-18, 2005.
[27] Keshmiri S, Colgren R, Mirmirani D. Modeling and simulation of a ge-neric hypersonic vehicle using merged aerodynamic models[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, Canberra, Australia, November 6-9, 2006.
[28] Javaid H, Serghides C. Airframe-propulsion integration methodology for waverider-derived hypersonic cruise aircraft design concepts[J]. Journal of Spacecraft and Rockets, 2005, 42(4):663-671.
[29] Mirmirani D, Wu C. Modeling for control of a generic airbreathing hy-personic vehicle[C]//AIAA Guidance, Navigation, and Control Confer-ence and Exhibit, San Francisco, California, August 15-18, 2005.
[30] Clark K, Mirmirani D, Wu C, et al. An aero-propulsion integrated elastic model of a generic airbreathing hypersonic vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, August 21-24, 2006.
[31] Clark K, Wu C, Mirmirani D. Development of an airframe-propulsion integrated generic hypersonic vehicle model[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 9-12, 2006
[32] Wang X, Feng D, Yu Y. Modeling method and CFD simulation of a hypersonic cruise vehicle[C]//2nd IEEE Conference on Industrial Elec-tronics and Applications. Harbin:IEEE, 2007:1346-1349.
[33] Frendreis G, Skujins T, Cesnik E. Six-degree-of-freedom simulation of hypersonic vehicles[C]//AIAA Atmospheric Flight Mechanics Con-ference, Chicago, Illinois, August 10-13, 2009.
[34] Frendreis G, Cesnik E. 3D simulation of flexible hypersonic vehicles[C]//AIAA Atmospheric Flight Mechanics Conference, Toronto, Ontar-io, Canada, August 2-5, 2010.
[35] Lanczos C. An iteration method for the solution of the eigenvalue prob-lem of linear differential and intergral operators[J]. Journal of Re-search of the National Institute of Standards & Technology, 1950, 45(45):255-282.
[36] Arnoldi E. The principle of minimized iterations in the solution of the matrix eigenvalue problem[J]. Quarterly of Applied Mathematics, 1951, 9(1):17-29.
[37] Salimbahrami B, Lohmann B. Modified lanczos algorithm in model or-der reduction of MIMO linear systems[R/OL].[2017-03-31]. http://www.rt.mw.tum.de/fileadmin/w00bhf/www/publikationen/forschungsberi-chte/FB_2002_Salimbahrami_LanczosMIMO.pdf.
[38] Salimbahrami B, Lohmann B, Bechtold T. Two-sided arnoldi in order reduction of large scale MIMO systems[R/OL].[2017-03-31]. http://www.rt.mw.tum.de/fileadmin/w00bhf/www/publikationen/forschungsberi-chte/FB_2002_Salimbahrami_techrep_3.pdf?origin=publication_detail.
[39] Moore B. Principal component analysis in linear systems:Controllabili-ty, observability, and model reduction[J]. IEEE Transactions on Auto-matic Control, 1981, 26(1):17-32.
[40] Gugercin S, Antoulas C. A survey of model reduction by balanced truncation and some new results[J]. International Journal of Control, 2004, 77(8):748-766.
[41] 尤明, 宗群, 曾凡琳, 等. 基于平衡截断方法的高超声速飞行器模型降阶[J]. 控制理论与应用, 2014, 31(6):795-800. You Ming, Zong Qun, Zeng Fanlin, et al. Model order reduction for hypersonic vehicle based on balanced truncate method[J]. Control Theory and Applications, 2014, 31(6):795-800.
[42] Williams P. A Monte Carlo dispersion analysis of the X-33 simulation software[C]//AIAA Atmospheric Flight Mechanics Conference, Montre-al, Canada, August 6-9, 2001.
[43] Baumann B, Richard M. The X-43A six-degree of freedom Monte Car-lo analysis[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 7-10, 2008.
[44] 吴静, 吴晓燕, 陈永兴, 等. 基于改进灰色关联分析的仿真模型验证方法[J]. 系统工程与电子技术, 2010, 32(8):1677-1679. Wu Jing, Wu Xiaoyan, Chen Yongxing, et al. Validation of simulation models based on improved grey relational analysis[J]. Systems Engineering and Electronics. 2010, 32(8):1677-1679.
[45] 王曙钊, 刘兴堂, 段锁力. 利用灰色关联度理论对仿真模型的评估研究[J]. 空军工程大学学报(自然科学版), 2007, 8(1):73-76. Wang Shuzhao, Liu Xingtang, Duan Suoli. Research on simulation model evaluation using grey correlation degree[J]. Journal of Air Force Engineering University(Natural Science Edition), 2007, 8(1):73-76.
[46] Hills R, Leslie H. Statistical validation of engineering and scientific models:Validation experiments to application[R]. Albuquerque, NM:Sandia National Labs, 2003.
[47] 李鹤, 吕岩, 杨明权. 基于频谱分析的飞行模拟器飞行性能验证[J]. 军械工程学院学报, 2008, 20(6):33-37. Li He, Lv Yan, Yang Mingquan. Validation of flight simulator's flight perfbrmance based on spectrum anaIysis[J]. Journal of Ordnance Engineering College, 2008, 20(6):33-37.
[48] Torrez S, Driscoll J, Dalle D. Hypersonic vehicle thrust sensitivity to angle of attack and mach number[C]//AIAA Atmospheric Flight Me-chanics Conference, Chicago, Illinois, August 10-13, 2009..
[49] Brian L, Dimitri M. Parameter sensitivity analysis for hypersonic vis-cous flow using a discrete adjoint approach[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, January 4-7, 2010.
[50] Oberguggenberger M, King J. Classical and imprecise probability meth-ods for sensitivity analysis in engineering:A case study[J]. Internation-al Journal of Approximate Reasoning, 2009, 50(4):680-693.
[51] Shao X L, Wang H L. Sliding mode based trajectory linearization con-trol for hypersonic reentry vehicle via extended disturbance observer[J]. Isa Transactions, 2014, 53(6):1771-1786.
[52] Sun H B, Li S, Sun C. Finite time integral sliding mode control of hy-personic vehicles[J]. Nonlinear Dynamics, 2013, 73(1/2):229-244.
[53] Hu X, Wu L G, Hu C, et al. Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle[J]. Journal of the Frank-lin Institute, 2012, 349(2):559-577.
[54] Liu H, Zong Q, Tian B L, et al. Hypersonic Vehicle control based on Integral Sliding Mode Method[C]//Proceeding of the 10th World Con-gress on Intelligent Control and Automation. Beijing, China, July 6-8, 2012.
[55] Tournes C, Hanks G. Hypersonic glider control using higher order slid-ing mode control[C]//IEEE SoutheastCon 2008. Huntsville:IEEE, 2008:274-279.
[56] Zong Q, Wang J, Tao Y. Adaptive high-order dynamic sliding mode control for a flexible air-breathing hypersonic vehicle[J]. International Journal of Robust and Nonlinear Control, 2013, 23(15):1718-1736.
[57] Wang J, Zong Q, Tian B, et al. Flight control for a flexible air-breath-ing hypersonic vehicle based on quasi-continuous high-order sliding mode[J]. Journal of Systems Engineering and Electronics, 2013, 24(2):288-295.
[58] Zong Q, Wang J, Tian B L, et al. Quasi-continuous high-order sliding mode controller and observer design for flexible hypersonic vehicle[J]. Aerospace Science and Technology, 2013, 27(1):127-137.
[59] Tian B L, Fan W, Zong Q, et al. Adaptive high order sliding mode controller design for hypersonic vehicle with flexible body dynamics[J]. Mathematical Problems in Engineering, 2013, doi:10.1155/2013/357685.
[60] Wang L, Sheng Y Z, Liu X D, et al. High-order sliding mode attitude controller design for reentry flight[J]. Systems Engineering and Elec-tronics, 2014, 25(5):848-858.
[61] Zhang Y Y, Li R F, Xue T, et al. An analysis of the stability and chat-tering reduction of high-order sliding mode tracking control for a hy-personic vehicle[J]. Information Sciences, 2016, 348:25-48.
[62] Zhang Y, Li R, Xue T, et al. Exponential sliding mode tracking con-trol via back-stepping approach for a hypersonic vehicle with mis-matched uncertainty[J]. Journal of the Franklin Institute, 2016, 353(10):2319-2343.
[63] Shao X L, Wang H L. Back-stepping robust trajectory linearization control for hypersonic reentry vehicle via novel tracking differentiator[J]. Journal of the Franklin Institute, 2016, 353(9):1957-1984.
[64] Wang P F, Wang J, Bu X W, et al. Adaptive fuzzy back-stepping con-trol of a flexible air-breathing hypersonic vehicle subject to input con-straints[J]. Journal of Intelligent & Robotic Systems, 2016, doi:10.1007/s10846-016-0438-9.
[65] Zong Q, Ji Y, Zeng F, et al. Output feedback back-stepping control for a generic hypersonic vehicle via small-gain theorem[J]. Aerospace Science and Technology, 2012, 23(1):409-417.
[66] Fiorentini L, Serrani A. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model[J]. Automatica, 2012, 48(7):1248-1261.
[67] Butt W, Yan L, Kendrick A. Adaptive dynamic surface control of a hy-personic flight vehicle with improved tracking[J]. Asian Journal of Control, 2013, 15(2):594-605.
[68] Zong Q, Wang F, Tian B, et al. Robust adaptive dynamic surface con-trol design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty[J]. Nonlinear Dynamics, 2014, 78(1):289-315.
[69] Banerjee S, Wang Z, Baur B, et al. L1 adaptive control augmentation for the longitudinal dynamics of a hypersonic glider[J]. Journal of Guidance Control & Dynamics, 2016, 39(2):275-291.
[70] Prime Z, Doolan C, Cazzolato B. Longitudinal L1 adaptive control of a hypersonic re-entry experiment[C]//15th Australian International Aero-space Congress (AIAC15), Australian International Aerospace Con-gress. Melbourne:VIC, 2013:717-726.
[71] Wiese D, Annaswamy A, Muse J, et al. Adaptive control of a generic hypersonic vehicle[R/OL].[2017-03-31]. http://dspace.mit.edu/bit-stream/handle/1721.1/101661/WIESE_GNC_2013_PREPRINT.pdf;jsessionid=D448EEA0D9B361CA72AFB5E020DCC0A6?sequence=1.
[72] He J J, Qi R Y, Jiang B, et al. Adaptive output feedback fault-toler-ant control design for hypersonic flight vehicles[J]. Journal of the Franklin Institute, 2015, 352(5):1811-1835.
[73] Jiao X, Jiang J. Design of adaptive switching control for hypersonic air-craft[J]. Advances in Mechanical Engineering, 2015, 7(10):1-10.
[74] Shao X, Wang H, Zhang H P. Enhanced trajectory linearization con-trol based advanced guidance and control for hypersonic reentry vehi-cle with multiple disturbances[J]. Aerospace Science & Technology, 2015, 46:523-536.
[75] Pu Z Q, Tan X, Fan G, et al. Uncertainty analysis and robust trajecto-ry linearization control of a flexible air-breathing hypersonic vehicle[J]. Acta Astronautica, 2014, 101(1):16-32.
[76] Bu X, Wu X, Wei D, et al. Neural-approximation-based robust adap-tive control of flexible air-breathing hypersonic vehicles with paramet-ric uncertainties and control input constraints[J]. Information Scienc-es, 2016, 346(C):29-43.
[77] Xu B. Robust adaptive neural control of flexible hypersonic flight vehi-cle with dead-zone input nonlinearity[J]. Nonlinear Dynamics, 2015, 80(3):1509.
[78] Adami T, Zhu J, Bolender M, et al. Flight control of hypersonic scram-jet vehicles using a differential algebraic approach[C]//AIAA Guid-ance, Navigation, and Control Conference and Exhibit, Keystone, Colo-rado, August 21-24, 2006.
[79] 朱亮, 姜长生. 基于非线性干扰观测器的空天飞行器轨迹线性化控制[J]. 南京航空航天大学学报, 2007, 39(4):491-495. Zhu Liang, Jiang Changsheng. Nonlinear disturbance observerenhanced trajectory linearization control for aerospace vehicle[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2007, 39(4):491-495.
[80] 朱亮, 姜长生, 薛雅丽. 基于单隐层神经网络的空天飞行器鲁棒自适应轨迹线性化控制[J]. 兵工学报, 2008, 29(1):52-56. Zhu Liang, Jiang Changsheng, Xue Yali. Robust adaptive trajectory linearization control for aerospace vehicle using single hidden layer neural networks[J]. Acta Armamentarii, 2008, 29(1):52-56.
[81] Shao X L, Wang H L. Active disturbance rejection based trajectory lin-earization control for hypersonic reentry vehicle with bounded uncer-tainties[J]. Isa Transactions, 2015, 54:27.
[82] Shy K S, Hageman J J, Le J H. The role of aircraft simulation in im-proving flight safety through control training[R/OL].[2017-03-31]. https://www.nasa.gov/centers/dryden/pdf/88743main_H-2501.pdf
[83] Crespo L G, Kenny S P. Matlab stability and control toolbox:trim and static stability module[R/OL].[2017-03-31]. https://ntrs.nasa.gov/ar-chive/nasa/casi.ntrs.nasa.gov/20070006853.pdf.
[84] Prevot T, Smith N, Palmer E, et al. The airspace operations laborato-ry (AOL) at NASA ames research center[C]//AIAA Modeling and Simu-lation Technologies Conference and Exhibit, Keystone, Colorado, Au-gust 21-24, 2006.
[85] Cotting M C, McCue L. The instructional design and redesign of an un-dergraduate-level, simulator-based course on ‘flight test techniques’[R/OL].[2017-03-31]. http://icee.usm.edu/ICEE/conferences/asee2007/papers/93_THE_INSTRUCTIONAL_DESIGN_AND_REDESIGN_OF.pdf.
[86] 郝秀, 宗群, 李庆鑫, 等. 基于dSPACE的高超声速飞行器实时仿真平台[J]. 计算机应用与软件, 2014(2):52-54. Hao Xiu, Zong Qun, Li Qingxin, et al. A real-time simulation platform for hypersonic vehicle based on dSpace[J]. Computer Applications and Software, 2014(2):52-54.
[87] 宗群, 廖海林, 吕力, 等. 基于分布式架构的临近空间飞行器视景仿真方法:201110299796[P]. 2012-04-25. Zong Qun, Liao Hailin, Lü Li, et al. Scene simulation method of near space vehicle based on distributed architecture:201110299796[P]. 2012-4-25.
[88] 宗群, 董琦, 徐锐, 等. 可重复使用运载器再入制导与控制系统性能评估方法:201410415835.3[P]. 2014-11-19. Zong Qun, Dong Qi, Xu Rui. Performance evaluation method of reentry guidance and control system for reusable launch vehicle:201410415835.3[P]. 2014-11-19.
[89] 宗群, 徐锐, 李庆鑫, 等. 基于OGRE的无人机全轨迹实时视景仿真系统[J]. 控制工程, 2015(1):1-7. Zong Qun, Xu Rui, Li Qingxin. A real time visual simulation system for unmanned aerial vehicle[J]. Control Engineering of China, 2015(1):1-7.