Special Issues

Faint voices from the universe——The 2017 Nobel Prize in Physics

  • GUO Zongkuan ,
  • HUANG Qingguo
Expand
  • Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2017-11-01

  Revised date: 2017-11-14

  Online published: 2017-12-16

Abstract

The Nobel Prize for Physics 2017 was divided, one half awarded to Rainer Weiss, the other half to Barry Clark Barish and Kip Stephen Thorne, for decisive contributions to the LIGO detector and the observation of gravitational waves. In this paper we introduce the academic experiences of these scientists, and interpret the scientific significance of this important discovery from theory, experiment and data analysis.

Cite this article

GUO Zongkuan , HUANG Qingguo . Faint voices from the universe——The 2017 Nobel Prize in Physics[J]. Science & Technology Review, 2017 , 35(23) : 12 -15 . DOI: 10.3981/j.issn.1000-7857.2017.23.001

References

[1] The Nobel Prize in Physics 2017[EB/OL].[2017-10-20]. https://www.nobelprize.org/nobel_prizes/physics/laureates/2017/.
[2] Simon D. Albert Einstein:Akademie-Vorträge:Sitzungsberichte der preußischen akademie der wissenschaften 1914-1932[M]. Weinheim, FRG:Wiley-VCH Verlag GmbH & Co. KGaA, 2006:99-108.
[3] Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6):061102.
[4] Abbott B P, Abbott R, Abbott T D, et al. GW151226:Observation of gravitational waves from a 22-Solar-Mass binary black hole coalescence[J]. Physical Review Letters, 2016, 116(24):241103.
[5] Scientific L. GW170104:Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2[J]. Physical Review Letters, 2017, 118(22):221101.
[6] Collaboration V, Gbm F, Collaboration I, et al. Multi-messenger observations of a binary neutron star merger[J]. Astrophysical Journal Letters, 2017, 848(L12).
[7] 郭宗宽, 蔡荣根, 张元仲. 引力波探测:引力波天文学的新时代[J]. 科技导报, 2016, 34(3):30-33.
[8] 傅雪, 刘国卿. 2016年天文学热点回眸[J]. 科技导报, 2017, 35(1):30-35.
[9] Cai R G, Cao Z, Guo Z K, et al. The gravitational-wave physics[J]. arXiv, 2017, doi:10.1093/nsr/nwx029.
[10] Pan Y, Buonanno A, Taracchini A, et al. Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effectiveone-body formalism[J]. Physical Review D, 2014, 89(8):1-37.
[11] Pretorius F. Evolution of binary black-hole spacetimes[J]. Physical Review Letters, 2005, 95(12):121101.
[12] Cao J W, Li J W. Real-time gravitational-wave burst search for multimessenger astronomy[J]. International Journal of Modern Physics D, 2011, 20(10):2039-2042.
[13] Lee H M, Bigot E O L, Du Z H, et al. Gravitational wave astrophysics, data analysis and multimessenger astronomy[J]. Science China, 2015, 58(12):1-21.
[14] Liu Y, Du Z, Chung S K, et al. GPU-accelerated low-latency realtime searches for gravitational waves from compact binary coalescence[J]. Classical & Quantum Gravity, 2012, 29(23):235018.
[15] Biswas R, Blackburn L, Cao J, et al. Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data[J]. Physical Review D, 2013, 88(6):062003.
[16] Cao J W, Zhang W, Tan W. Dynamic control of data streaming and processing in a virtualized environment[J]. IEEE Transactions on Automation Science & Engineering, 2012, 9(2):365-376.
[17] Zhang F, Cao J W, Li K Q, et al. Multi-objective scheduling of many tasks in cloud platforms[J]. Future Generation Computer Systems, 2014, 37(7):309-320.
Outlines

/