[1] Sekine Y, Nishimura A. Removal of formaldehyde from indoor air by passive type air-cleaning materials[J]. Atmospheric Environment, 2001, 35(11):2001-2007.
[2] Sekine Y. Oxidative decomposition of formaldehyde by metal oxides at room temperature[J]. Atmospheric Environment, 2002, 36(35):5543-5547.
[3] Sidheswaran M A, Destaillats H, Sullivan D P, et al. Quantitative roomtemperature mineralization of airborne formaldehyde using manganese oxide catalysts[J]. Applied Catalysis B Environmental, 2011, 107(1-2):34-21.
[4] Tian H, He J H, Zhang X, et al. Facile synthesis of porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation[J]. Microporous & Mesoporous Materials, 2011, 138(1-3):118-122.
[5] Chen H M, He J H, Zhang C B, et al. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde[J]. Journal of Physical Chemistry C, 2007, 111(49):18033-18038.
[6] Yu X H, He J H, Wang D, et al. Facile controlled synthesis of Pt/MnO2 nanostructured catalysts and their catalytic performance for oxidative decomposition of formaldehyde[J]. Journal of Physical Chemistry C, 2011, 116(1):851-860.
[7] Yu X H, He J H, Wang D, et al. Au-Pt bimetallic nanoparticles supported on nest-like MnO2:Synthesis and application in HCHO decomposition[J]. Journal of Nanoparticle Research, 2012, 14(11):1-14.
[8] Shi C, Wang Y, Zhu A, et al. MnxCo3-xO4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde[J]. Catalysis Communications, 2012, 28(28):18-22.
[9] Wang Y, Zhu A, Crocker M, et al. Three-dimensional ordered mesoporous Co-Mn oxide:A highly active catalyst for "storage-oxidation" cycling for the removal of formaldehyde[J]. Catalysis Communications, 2013, 36:52-57.
[10] Fang D R, Ren W Z, Liu Z M, et al. Synthesis of mesoporous Cu-MnAl2O3 materials and their applications to preferential catalytic oxidation of CO in a hydrogen-rich stream[J]. Chemical Research in Chinese Universities, 2010, 26(1):105-109.
[11] Li W B, Zhuang M, Xiao T C, et al. MCM-41 supported Cu-Mn catalysts for catalytic oxidation of toluene at low temperatures[J]. Journal of Physical Chemistry B, 2006, 110(43):21568-21571.
[12] Terribile D, Trovarelli A, Leitenburg C D, et al. Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions[J]. Catalysis Today, 1999, 47(98):133-140.
[13] Krämer M, Schmidt T, Stöwe K, et al. Structural and catalytic aspects of sol-gel derived copper manganese oxides as low-temperature CO oxidation catalyst[J]. Applied Catalysis A General, 2006, 302(1):112.
[14] Njagi E C, Chen C H, Genuino H, et al. Total oxidation of CO at ambient temperature using copper manganese oxide catalysts prepared by a redox method[J]. Applied Catalysis B Environmental, 2010, 99(1-2):103-110.
[15] Kireev A S, Mukhin V M, Kireev S G, et al. Preparation and properties of modified hopcalite[J]. Russian Journal of Applied Chemistry, 2009, 82(1):169-171.
[16] Tang Z R, Christopher D J, James K W A, et al. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation[J]. Chemcatchem, 2009, 1(2):247-251.
[17] Sinha A K, Suzuki K, Takahara M, et al. Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification[J]. Angewandte Chemie, 2007, 46(16):2891-2894.
[18] Minicò S, Scirè S, Crisafulli C. Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts[J]. Applied Catalysis B Environmental, 2000, 28(3):245-251.
[19] Njagi E C, Genuino H C, King'Ondu C K, et al. Catalytic oxidation of ethylene at low temperatures using porous copper manganese oxides[J]. Applied Catalysis A General, 2012, 421(422):154-160.
[20] Cai L N, Guo Y, Lu A H, et al. The choice of precipitant and precursor in the co-precipitation synthesis of copper manganese oxide for maximizing carbon monoxide oxidation[J]. Journal of Molecular Catalysis A Chemical, 2012, 360(360):35-41.
[21] Jones C, Cole K J, Taylor S H. Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation:Effect of calcination on activity[J]. Journal of Molecular Catalysis A Chemical, 2009, 305(1-2):121-124.
[22] Min K, Park E D, Ji M K, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A General, 2007, 327(2):261-269.
[23] Ettireddy P R, Ettireddy N, Mamedov S, et al. Surface characterization studies of TiO2, supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Applied Catalysis B Environmental, 2007, 76(1-2):123-134.
[24] Tian H, He J H, Liu L, et al. Effects of textural parameters and noble metal loading on the catalytic activity of cryptomelane-type manganese oxides for formaldehyde oxidation[J]. Ceramics International, 2013, 39(1):315-321.
[25] Tian H, He J H, Liu L, et al. Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde[J]. Microporous & Mesoporous Materials, 2012, 151(11):397-402.
[26] Hasegawa Y I, Maki R U, Sano M, et al. Preferential oxidation of CO on copper-containing manganese oxides[J]. Applied Catalysis A, 2009, 371(1-2):67-72.
[27] Mirzaei A A, Faizi M, Habibpour R. Effect of preparation conditions on the catalytic performance of cobalt manganese oxide catalysts for conversion of synthesis gas to light olefins[J]. Applied Catalysis A General, 1998, 166(1):143-152.
[28] Morales M R, Barbero B P, Cadús L E. Evaluation and characterization of Mn-Cu mixed oxide catalysts for ethanol total oxidation:Influence of copper content[J]. Fuel, 2008, 87(7):1177-1186.
[29] Kang M, Park E D, Kim J M, et al. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catalysis Today, 2006, 111(3):236-241.
[30] Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Cheminform, 1994, 25(23):173-189.