Flexible electronics technology for precision medicine

  • ZHAO Yicong ,
  • XU Kexin ,
  • HUANG Xian
  • School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China

Received date: 2017-08-04

  Revised date: 2017-09-14

  Online published: 2017-12-16


Precision medicine is a highly personalized medicine mode that relies on large amount of personal health data to conduct diagnosis and treatment. The personal health data consist of genomics, phenotype, and environmental information. The latter two need to be captured by mobile devices with capability of continuous monitoring. This paper introduces the concept of precision medicine and reveals that dynamical medical monitoring can be best achieved by flexible electronics technology. Then it summarizes flexible electronics technology concerning materials, design, integration methods and data transmission, and demonstrates some applications in precision medicine. Finally, the paper points out that flexible medical monitoring system can offer better service for precision medicine by optimizing system performance in terms of power supply, integration, complexity, and in-depth research of chemical signal measurement.

Cite this article

ZHAO Yicong , XU Kexin , HUANG Xian . Flexible electronics technology for precision medicine[J]. Science & Technology Review, 2017 , 35(23) : 76 -81 . DOI: 10.3981/j.issn.1000-7857.2017.23.012


[1] Committee on a framework for development of a new taxonomy of disease, national research council. Toward precision medicine:Building a knowledge network for biomedical research and a new taxonomy of disease[R]. Washington DC:National Academies Press, 2011.
[2] Jameson J L, Longo D L. Precision medicine-personalized, problematic, and promising[J]. New England Journal of Medicine, 2015, 372(23):2229-2234.
[3] Akiyama M, Ueno N, Nonaka K, et al. Flexible pulse-wave sensors from oriented aluminum nitride nanocolumns[J]. Applied Physics Letters, 2003, 82(12):1977-1979.
[4] Xiao S Y, Che L F, Li X X, et al. A temperature sensor array based on flexible MEMS skin technology[J]. Optics and Precision Engineering, 2005, 13(6):674-680.
[5] Sung M, Marci C, Pentland A. Wearable feedback systems for rehabilitation[J]. Journal of Neuroengineering & Rehabilitation, 2005, 2:17, doi:10.1186/1743-0003-2-17.
[6] Khang D Y, Jiang H Q, Huang Y, et al. A stretchable form of singlecrystal silicon for high-performance electronics on rubber substrates[J]. Science, 2006, 311(5758):208-212.
[7] Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics[J]. Science, 2010, 327(5973):1603.
[8] Liu Y, Norton J J S, Qazi R, et al. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces[J]. Science Advances, 2016, 2(11):e1601185.
[9] Ko H C, Stoykovich M P, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 2008, 454(7205):748.
[10] Cooper C B, Arutselvan K, Liu Y, et al. Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers[J]. Advanced Functional Materials, 2017, 27(20), doi:10.1002/adfm.201605630.
[11] Xu L, Gutbrod S R, Ma Y, et al. Membranes:Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy[J]. Advanced Materials, 2015, 27(10):1731-1737.
[12] Yan Z, Zhang M F, Wang M J, et al. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials[J]. Advanced Functional Materials, 2016, 26(16):2629-2639.
[13] Martirosyan N, Kalani M Y. Epidermal electronics[J]. Science, 2011, 333(6):485-486.
[14] Du D, Li P, Ouyang J. Graphene coated nonwoven fabrics as wearable sensors[J]. Journal of Materials Chemistry C, 2016, 4(15):3224-3230.
[15] Guo X, Huang Y, Cai X, et al. Capacitive wearable tactile sensor based on smart textile substrate with carbon black/silicone rubber composite dielectric[J]. Measurement Science & Technology, 2016, 27(4):045105.
[16] Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials, 2015, 27(15):2433-2439.
[17] Parrilla M, Cánovas R, Jeerapan I, et al. A textile-based stretchable multi-ion potentiometric sensor[J]. Advanced Healthcare Materials, 2016, 5(9):996-1001.
[18] Khan Y, Ostfeld A E, Lochner C M, et al. Monitoring of vital signs with flexible and wearable medical devices[J]. Advanced Materials, 2016, 28(22):4373-4395.
[19] Liu J, Fu T M, Cheng Z, et al. Syringe-injectable electronics[J]. Nature Nanotechnology, 2015, 10(7):629-636.
[20] Kang S K, Murphy R K, Hwang S W, et al. Bioresorbable silicon electronic sensors for the brain[J]. Nature, 2016, 530(7588):71-76.
[21] Bandodkar A J, Molinnus D, Mirza O, et al. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring[J]. Biosensors & Bioelectronics, 2014, 54(15):603-609.
[22] Wen S, Heidari H, Vilouras A, et al. A wearable fabric-based RFID skin temperature monitoring patch[C]//Sensors, 2016 IEEE. Piscataway, NJ:IEEE, 2017, doi:10.1109/ICSENS.2016.7808919.
[23] Kim J, Salvatore G A, Araki H, et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin[J]. Science Advances, 2016, 2(8):e1600418.
[24] Luo N, Dai W, Li C, et al. Wearable sensors:Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement[J]. Advanced Functional Materials, 2016, 26(8), doi:10.1002/adfm.201504560.
[25] Boland C S, Khan U, Backes C, et al. Sensitive, high-strain, highrate bodily motion sensors based on graphene-rubber composites[J]. ACS Nano, 2014, 8(9):8819-8830.
[26] Pang C, Koo J H, Nguyen A, et al. Sensors:Highly skin-conformal microhairy sensor for pulse signal amplification[J]. Advanced Materials, 2015, 27(4):634-640.
[27] Webb R C, Pielak R M, Bastien P, et al. Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators[J]. PLoS One, 2015, 10(2):e0118131.
[28] Zhang Y H, Webb R C, Luo H, et al. Theoretical and experimental studies of epidermal heat flux sensors for measurements of core body temperature[J]. Advanced Healthcare Materials, 2016, 5(1):119-127.
[29] Li H, Xu Y, Li X, et al. Epidermal inorganic optoelectronics for blood oxygen measurement[J]. Advanced Healthcare Materials, 2017, 6(9), doi:10.1002/adhm.201601013.
[30] Wang Y, Wang L, Yang T, et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring[J]. Advanced Functional Materials, 2014, 24(29):4666-4670.
[31] Xu B X, Akhtar A, Liu Y H, et al. Flexible electronics:An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation[J]. Advanced Materials, 2016, 28(22):4462-4471.
[32] Yeo W H, Kim Y S, Lee J, et al. Multifunctional epidermal electronics printed directly onto the skin.[J]. Advanced Materials, 2013, 25(20):2773-2778.
[33] Kim T I, Mccall J G, Jung Y H, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics[J]. Science, 2013, 340(6129):211-216.
[34] Huang X, Liu Y, Chen K, et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat[J]. Small, 2014, 10(15):3083-3090.
[35] Abellán-Llobregat A, Jeerapan I, Bandodkar A, et al. A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration[J]. Biosensors & Bioelectronics, 2017, 91:885-891.
[36] Bandodkar A J, Molinnus D, Mirza O, et al. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring[J]. Biosensors & Bioelectronics, 2014, 54(15):603-609.
[37] Hong G W, Kim S H, Kim J H. Flexible pressure sensors for burnt skin patient monitoring[C]//Proceedings of SPIE-Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2015. New York:SPIE, doi:10.1117/12.2084575.
[38] Araki H, Kim J, Zhang S, et al. UV Sensors:Materials and device designs for an epidermal uv colorimetric dosimeter with near field communication capabilities[J]. Advanced Functional Materials, 2017, 27(2), doi:10.1002/adfm.201604465.
[39] Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nature Communications, 2013, 4(2), doi:10.1038/ncomms2553.
[40] Li Y, Meng L, Yang Y, et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates[J]. Nature Communications, 2016, 7:10214.
[41] Lu Z, Zhang H, Mao C, et al. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body[J]. Applied Energy, 2016, 164:57-63.
[42] Lee J H, Lee K Y, Gupta M K, et al. Highly stretchable piezoelectricpyroelectric hybrid nanogenerator[J]. Advanced materials, 2014, 26(5):765-769.
[43] Fan Z, Zhang Y, Ma Q, et al. A finite deformation model of planar serpentine interconnects for stretchable electronics[J]. International Journal of Solids & Structures, 2016, 91:46-59.
[44] Huang X, Liu Y, Chen K, et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat[J]. Small, 2014, 10(15):3083-3090.