[1] 陆琦. 我国首座铅基核反应堆零功率装置达临界[EB/OL].[2017-12-10]. http://www.cas.cn/cm/201612/t20161226_45859-64.shtml.
[2] 宋英明, 高庆瑜, 徐宇超, 等. 基于IQS/MC方法的ADS次临界反应堆中子时空动力学模拟分析[J]. 原子能科学技术, 2017, 51(3):450-456.
[3] 陈其昌, 司胜义, 赵金坤, 等. 无铍钍基熔盐堆堆芯设计与安全研究[J]. 原子能科学技术, 2017, 51(7):1252-1259.
[4] 司胜义, 陈其昌, 卑华, 等. 新型钍基熔盐堆多物理计算模型及分析[J]. 强激光与粒子束, 2017, 29(1):75-82.
[5] 卑华, 司胜义, 陈其昌, 等. 新型钍基熔盐堆堆芯方案及燃耗分析[J]. 强激光与粒子束, 2017, 29(1):83-87.
[6] 中科院、甘肃省签署四代先进核能钍基熔盐堆战略合作框架协议[EB/OL].[2017-12-10]. http://news.sina.com.cn/o/2017-11-15/doc-ifynwhww5205966.shtml.
[7] 立足自主创新,打造核电走出去的国家名片[EB/OL].[2017-12-10]. http://news.bjx.com.cn/html/20171019/856214.shtml.
[8] 王永福, 孙玉良. 高温气冷堆供热项目厂址选择法规标准适用性研究[J]. 科技导报, 2017, 35(13):24-28.
[9] 刘杨, 汪俊. 高温气冷堆燃料运输容器热工计算分析[J]. 核动力工程, 2017, 38(5):160-163.
[10] 曲新鹤, 杨小勇, 王捷. 商用高温气冷堆联合循环方案研究[J]. 原子能科学技术, 2017, 51(9):1578-1584.
[11] 清华参与共建的中国-印尼高温气冷堆联合实验室在雅加达揭牌[EB/OL].[2017-12-10]. http://news.tsinghua.edu.cn/publish/thunews/9659/2017/20171130162833603999441/201-71130162833603999441_.html.
[12] 现有反应堆出口受阻日本拟卖给波兰新型高温气冷堆[EB/OL].[2017-12-10]. http://sh.qihoo.com/2s1cmu5yg1y?sign=look.
[13] 世界核电迎来"中国芯"高温气冷堆受到国际关注[EB/OL].[2017-12-10]. http://news.xinhuanet.com/politics/2017-10/09/c_1121770973.htm.
[14] 中国核学会. 2015-2017年度中国十大核科技进展[EB/OL].[2017-12-21]. http://www.stdaily.com/kjzc/index.shtml.
[15] 章庆华, 王佳明, 王海东, 等. 行波堆渐行渐近-全球首座行波堆示范电厂加快面世步伐[J]. 中国核工业, 2017(4):22-27.
[16] The Generation IV InternationalForum-ISSCWR-8[EB/OL].[2017-12-12]. https://www.gen-4.org/gif/jcms/c_91758/isscwr--8.
[17] 杨平, 明哲东, 许余, 等. 超临界水堆燃料组件选型论证研究[J]. 强激光与粒子束, 2017, 29(1):143-147.
[18] 刘雨, 陆道纲, 汪喆, 等. 超临界水堆燃料棒流致振动简化模型[J]. 核科学与工程, 2017, 37(3):362-366.
[19] 王连杰, 赵文博, 陈炳德, 等. 超临界水堆堆芯典型瞬态三维核热耦合分析[J]. 核动力工程, 2017, 5:145-150.
[20] Nguyen A T, Namgung I. Structural assessments of plate type support system for APR1400 reactor[J]. Nuclear Engineering & Design, 2017, 314(Supplement C):256-270.
[21] Li C, Li L, Li J, et al. Analysis of the passive heat removal enhancement for AP1000 containment due to the partially wetted coverage[J]. Nuclear Engineering & Design, 2017, 313(Supplement C):185-189.
[22] Sui D, Lu D, Shang C, et al. Investigation on response of HPR1000 under different mitigation strategies after SGTR accident[J]. Annals of Nuclear Energy, 2018, 112(Supplement C):328-336.
[23] Sui D, Lu D, Shang C, et al. Response characteristics of HPR1000 primary circuit under different working conditions of the atmospheric relief system after SBLOCA[J]. Nuclear Engineering & Design, 2017, 314(Supplement C):307-317.
[24] Sun D C, Li Y, Xi Z, et al. Experimental evaluation of safety performance of emergency passive residual heat removal system in HPR1000[J]. Nuclear Engineering & Design, 2017, 318:54-60.
[25] Dong G K. The effect of nodalization and temperature of reactor upper region:Sensitivity analysis for APR-1400 LBLOCA[J]. Annals of Nuclear Energy, 2017, 99(Supplement C):28-35.
[26] Kim I G, Bang I C. Hydraulic control rod drive mechanism concept for passive in-core cooling system (PINCs) in fully passive advanced nuclear power plant[J]. Experimental Thermal & Fluid Science, 2017, 85:266-278.
[27] Hasslberger J, Kim H K, Kim B J, et al. Three-dimensional CFD analysis of hydrogen-air-steam explosions in APR1400 containment[J]. Nuclear Engineering & Design, 2017, 320:386-399.
[28] Wang M, Bai L, Wang L, et al. Thermal hydraulic and stress coupling analysis for AP1000 pressurized thermal shock (PTS) study under SBLOCA scenario[J]. Applied Thermal Engineering, 2017, 122(25):158-170.
[29] Agrawal N, Ali S M, Balasubramaniyan V. Innovative hydrogen recombiner concept for severe accident management in nuclear power plants[J]. Nuclear Engineering & Design, 2017, 323(Supplement C):359-366.
[30] Sun X, Cao X, Shi X, et al. Comparative study on aerosol removal by natural processes in containment in severe accident for AP1000 reactor[J]. Annals of Nuclear Energy, 2016, 99(Supplement C):216-226.
[31] Liu Y, Lu D, Liu H, et al. The shaking table experiments on sliding and overturning of CAP1400 spent fuel storage rack with the effect of FSI[J]. Annals of Nuclear Energy, 2018, 112(Supplement C):277-288.
[32] Liu Y, Lu D, Li W, et al. Effect of neighboring wall on the fluid added mass of CAP1400 spent fuel storage rack[J]. Progress in Nuclear Energy, 2017, 101(Part B):177-187.
[33] Yang Z, Shan J, Gou J. Preliminary assessment of a combined passive safety system for typical 3-loop PWR CPR1000[J]. Nuclear Engineering & Design, 2017, 313(Supplement C):148-161.
[34] 中国核协会. 2015-2017年度中国十大核科技进展[EB/OL].[2017-12-20]. http://www.stdaily.com/kjzc/top/2017-10/20/content_585855.shtml.
[35] 宋丹戎, 秦忠, 程慧平, 等. ACP100模块化小型堆研发进展[J]. 中国核电, 2017, 10(2):172-177.
[36] 中国核协会. 中国核学会2017年学术年会大会报告集锦[EB/OL].[2017-12-20]. http://mp.weixin.qq.com/s/meSrHlEwnOIdOdv1b8Z2vQ.
[37] 张国旭, 解衡, 谢菲. 小型模块式压水堆设计综述[J]. 原子能科学技术, 2015, (B5):40-47.
[38] Mycle S. The world nuclear industry status report 2017[R]. Paris:Independent Consultant, 2017.
[39] The consortium for advanced simulation of light water reactors[EB/OL].[2017-12-20]. http://www.casl.gov/vision.shtml.
[40] Jones C, HetzlerA, DinhN, et al. Initial verification and validation assessment for VERA[R], United States:USDOE, 2017.
[41] Godfrey A T, Collins BS, GentryCA, et al. Watts bar unit 2 startup results with VERA[R], United States:USDOE, 2017.
[42] Chanaron B. Overview of the NURESAFE European project[J]. Nuclear Engineering & Design, 2017, 321(Supplement C):1-7.
[43] García-Herranz N, Cuervo D, Sabater A, et al. Multiscale neutronics/thermal-hydraulics coupling with COBAYA4 code for pin-by-pin PWR transient analysis[J]. Nuclear Engineering & Design, 2017, 321(Supplement C):38-47.
[44] Perin Y, Escalante J J. Application of the best-estimate plus uncertainty approach on a BWR ATWS transient using the NURESIM European code platform[J]. Nuclear Engineering and Design, 2017, 321(Supplement C):48-56.
[45] Bois G. Direct Numerical Simulation of a turbulent bubbly flow in a vertical channel:Towards an improved Second-Order Reynolds Stress Model[J]. Nuclear Engineering and Design, 2017, 321(Supplement C):92-103.
[46] Mimouni S, Fleau S, Vincent S. CFD calculations of flow pattern maps and LES of multiphase flows[J]. Nuclear Engineering and Design, 2017, 321(Supplement C):118-131.
[47] Zhang H, Guo J, Lu J, et al. A Comparison of Coupling Algorithms for N/TH Transient Problems in HTR[C]. M&C 2017-International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Jeju, 16-20, 2017.
[48] 卢佳楠, 郭炯, 李富. JFNK在高温堆扩散计算中的应用[J]. 强激光与粒子束, 2017, 29(3):127-132.
[49] 黄凯. 数值反应堆的高保真燃耗计算方法研究[D]. 西安:西安交通大学能源与动力工程学院, 2017.
[50] 张滕飞. 非均匀变分节块法及其在三维全堆芯中子学计算中的应用[D]. 西安:西安交通大学能源与动力工程学院, 2017.
[51] ANS. Nuclear grand challenges[EB/OL].[2017-12-20]. http://www.ans.org/challenges/.
[52] ANS. Challenge:Accelerate development and qualification of advanced materials[EB/OL].[2017-12-20]. http://www.ans.org/challenges/materials/.
[53] Charit I. Accident tolerant nuclear fuels and cladding materials[J]. JOM, 2017, 90(6):24.
[54] Chen S, Yuan C. Neutronic analysis on potential accident tolerant fuel-cladding combination U3Si2-FeCrAl[J]. Science and Technology of Nuclear Installations, 2017, 24(2):1-12.
[55] Brown N R, Wysocki A J, Terrani K A, et al. The potential impact of enhanced accident tolerant cladding materials on reactivity initiated accidents in light water reactors[J]. Annals of Nuclear Energy, 2017, 99(Supplement C):353-365.
[56] Liu M, Brown N R, Terrani K A, et al. Potential impact of accident tolerant fuel cladding critical heat flux characteristics on the high temperature phase of reactivity initiated accidents[J]. Annals of Nuclear Energy, 2017, 110(Supplement C):48-62.
[57] Cinbiz M N, Brown N, Terrani K A, et al. Energy materials 2017:The mechanical response evaluation of advanced claddings during proposed reactivity initiated accident conditions[M]. Charm, Switzerland:Springer International Publishing, 2017:355-365.
[58] Gamble K A, Barani T, Pizzocri D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491(Supplement C):55-66.
[59] Unocic K A, Yamamoto Y, Pint B A. Effect of Al and Cr content on air and steam oxidation of FeCrAl alloys and commercial APMT alloy[J]. Oxidation of Metals, 2017, 87(3-4):431-441.
[60] Pint B A. Performance of FeCrAl for accident-tolerant fuel cladding in high-temperature steam[J]. Corrosion Reviews, 2017, 35(3):167-175.
[61] Jolkkonen M, Malkki P, Johnson K, et al. Uranium nitride fuels in superheated steam[J]. Journal of Nuclear Science and Technology, 2017, 54(5):513-519.
[62] Miao Y, Harp J, Mo K, et al. In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures[J]. Journal of Nuclear Materials, 2017, 484:168-173.
[63] Miao Y, Harp J, Mo K, et al. Bubble morphology in U3Si2 implanted by high-energy Xe ions at 300℃[J]. Journal of Nuclear Materials, 2017, 495:146-153.
[64] Field K G, Briggs S A, Sridharan K, et al. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa[J]. Journal of Nuclear Materials, 2017, 495:20-26.
[65] Lin Y R, Chen L G, Hsieh C Y, et al. Atomic configuration of point defect clusters in ion-irradiated silicon carbide[J]. Scientific reports, 2017, 7(1):14635.
[66] Westinghouse launches its EnCore Fuel[EB/OL].[2017-12-20]. http://www.world-nuclear-news.org/UF-Westinghouse-launches-its-EnCore-Fuel-14061702.html.
[67] 张楷欣. 中国事故容错燃料技术革命取得积极进展[EB/OL].[2017-12-14]. http://www.chinanews.com/cj/2017/12-11/839-7876.shtml.
[68] Zhang Y, Xu G, Wang Y, et al. Mechanical properties study of W/TiN/Ta system multilayers[J]. Journal of Alloys and Compounds, 2017, 725:283-290.
[69] Reiser J, Garrison L, Greuner H, et al. Ductilisation of tungsten (W):Tungsten laminated composites[J]. International Journal of Refractory Metals and Hard Materials, 2017, 69:66-109.
[70] Cheng L, De Temmerman G, Morgan T W, et al. Mitigated blistering and deuterium retention in tungsten exposed to high-flux deuterium-neon mixed plasmas[J]. Nuclear Fusion, 2017, 57(4):046028.
[71] Parish C M, Wang K, Doerner R P, et al. Grain orientations and grain boundaries in tungsten nonotendril fuzz grown under divertor-like conditions[J]. Scripta Materialia, 2017, 127:132-135.
[72] Wang K, Doerner R P, Baldwin M J, et al. Morphologies of tungsten nanotendrils grown under helium exposure[J]. Scien tific Reports, 2017, 7:42315.
[73] Hammond K D, Blondel S, Hu L, et al. Large-scale atomistic simulations of low-energy helium implantation into tungsten single crystals[J]. Acta Materialia, 2018, 144:561-578.
[74] Lu C, Niu L, Chen N, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multi component single-phase alloys[J]. Nature communications, 2016, 7:13564.
[75] Ullah M W, Xue H, Velisa G, et al. Effects of chemical alter nation on damage accumulation in concentrated solid-solu tion alloys[J]. Scientific reports, 2017, 7(1):41-46.
[76] Lu C, Yang T, Jin K, et al. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution al loys[J]. Acta Materialia, 2017, 127:98-107.
[77] Zhang Y, Zhao S, Weber W J, et al. Atomic-level heterogene ity and defect dynamics in concentrated solid-solution alloys[J]. Current Opinion in Solid State and Materials Science, 2017, 21(5):221-237.
[78] Zhao S, Weber W J, Zhang Y. Unique challenges for model ing defect dynamics in concentrated solid-solution alloys[J]. JOM, 2017, 69(11):2084-2091.
[79] Wang Z, Liu C T, Dou P. Thermodynamics of vacancies and clusters in high-entropy alloys[J]. Physical Review Materials, 2017, 1(4):043601.
[80] Chen D, Li N, Yuryev D, et al. Self-organization of helium precipitates into elongated channels within metal nanolayers[J]. Science Advances, 2017, 3(11):eaao2710.
[81] 邓少刚. 关于召开《放射性废物分类》宣贯会的通知[EB/OL].[2017-12-15]. http://www.zhb.gov.cn/gkml/hbb/bgth/201-712/t20171214_427940_wap.shtml.
[82] 方祥洪, 杨彬, 马若霞. 放射性废油处理技术研究[J]. 山东化工, 2017, 46(7):203-204.
[83] 徐乐瑾, 隋增光. 湿式氧化法处理放射性废离子交换树脂研究进展[J]. 科技导报, 2017, 35(13):29-36.
[84] 董文曙, 周焱, 王鑫. 放射性废树脂热态超压处理工艺评价[J]. 广州化工, 2017, 45(19):139-141.
[85] Karumalikkal A P, Schneider F, Scherer U W. Construction and testing of a closed microwave plasma oven system for the treatment of radioactive waste[J]. Radiation Effects & Defects in Solids, 2017, 172(1-2):139-149.
[86] Trnovcevic J, Schneider F, Scherer U W. Investigation of some process parameters using microwave plasma technology for the treatment of radioactive waste[J]. Radiation Effects & Defects in Solids, 2017, 172(1-2):23-31.
[87] Xu L J, Wang J L. The application of graphene-based materi als for the removal of heavy metals and radionuclides from water and wastewater[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(12):1042-1105.
[88] 马锋, 靳强, 高鹏元, 等. Np(V)在漳州伊利石上吸附作用的实验及建模研究[J]. 原子能科学技术, 2017, 51(5):790-797.
[89] 姜自超, 丁建华, 张时豪, 等. 水泥及其复合体系固化放射性核废物研究现状[J]. 当代化工, 2017, 46(1):141-144.
[90] 陈良, 吴雪松, 饶仲群,等. 放射性废物水泥固化桶外混合技术分析[J]. 核科学与工程, 2017, 37(3):386-392.
[91] 张怡, 郑佐西, 朱欣研,等. 放射性固体废物水泥砂浆固定配方研究[J]. 核化学与放射化学, 2017, 39(1):63-68.
[92] 王兰, 侯晨曦, 樊龙,等. 矿物固化含Sr、Cs放射性废物研究进展[J]. 材料导报, 2017, 31(2):106-111.
[93] 张帅. 放射性污染土壤的微波固化工艺及其效应评价[D]. 四川:西南科技大学, 2017.
[94] 刘博煜, 龚有进, 刘强,等. 新型多孔材料在惰性气体Xe/Kr分离中的应用[J]. 材料导报, 2017, 31(10):51-59.
[95] 艾明. 一种新型低放废物暂存工艺[J]. 中国核电, 2017, 10(1):114-118.
[96] 房江锋, 李小强. 华南某预选低-中放射性废物处置场地下水流模拟[J]. 土工基础, 2017, 31(3):304-307.
[97] 戴荧, 张安运. 杯
[4] 双冠醚的合成及分离高放废液中Cs的研究进展[J]. 湿法冶金, 2017, 36(2):83-90.
[98] Zhang A Y, Hu Q H. Removal of cesium by countercurrent solvent extraction with a calix
[4] crown derivative[J]. Separa tion Science and Technology, 2017, 52(10):1670-1679.
[99] Kwon S, Choi J, Cho S, et al. A novel method for separating Cs+ from liquid radioactive waste using ionic liquids and a se lective extractant[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311(3):1605-1611.
[100] 徐凯. 核废料玻璃固化国际研究进展[J]. 中国材料进展, 2016, 35(7):481-488.
[101] Zhang Y J, Kong L G, Karatchevtseva I, et al. Development of brannerite glass-ceramics for the immobilization of ac tinide-rich radioactive wastes[J]. Journal of the American Ceramic Society, 2017, 100:4341-4351.
[102] Erenturk S A, Bengisu M, Erdogan C. Evaluation of sodium borate glasses for radioactive waste immobilization applica tions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017(1):1-18.
[103] 王铁山, 彭海波, 刘枫飞,等. 高放废物玻璃固化体的辐照效应研究进展[J]. 原子能科学技术, 2017, 51(6):967-974.
[104] 吴晓翠, 康明亮, 蔡智毅, 等. 北山地下水氧化还原电势及其对可变价核素迁移的影响[J]. 核化学与放射化学, 2017, 39(3):227-234.
[105] 仝跃, 黄宏伟, 张东明,等. 高放废物处置地下实验室建设期风险接受准则[J]. 中国安全科学学报, 2017, 27(2):151-156.
[106] 郑阳. 高放废物地质处置地下实验施工期风险评价与分析研究[D]. 山东:山东大学, 2017.
[107] 李兴军. 高放废物地质处置地下实验室施工开挖围岩稳定性分析研究[D]. 山东:山东大学, 2017,
[108] 罗辉, 王驹, 蒋实, 等. 高放废物地质处置地下实验室新场候选场址三维地质建模[J]. 铀矿地质, 2017, 33(3):178-183.
[109] 王驹, 凌辉, 陈伟明. 高放废物地质处置库安全特性研究[J]. 中国核电, 2017, 10(2):270-278.
[110] 贝新宇, 陈璋如. 国外高放废物地质处置库地下实验室环境监测与影响评价浅析[J]. 世界核地质科学, 2017, 34(3):180-186.
[111] 徐国庆. 高放废物分类处置的国际新动向[J]. 世界核地质科学, 2017, 34(2):118-124.
[112] 赵永安, 高敏, 高树桃, 等. 大数据在高放废物地质处置中的应用研究前瞻[J]. 铀矿地质, 2017, 33(1):59-64.
[113] 向霞, 万亚平, 何志爽, 等. 高放废物地质处置安全评价信息管理系统的设计与实现[J]. 电脑知识与技术, 2017, 13(14):9-10.
[114] 高敏, 黄树桃, 王鹏, 等. 高放废物地质处置数据资源集成开发进展[J]. 铀矿地质, 2017, 33(2):113-117.
[115] 张洪健, 余刃, 刘笑凡, 等. 基于嵌入式的乏燃料干储存温度监测系统[J]. 兵器装备工程学报, 2017, 38(11):138-141.
[116] 刘雅兰, 叶国安, 柴之芳, 等. 铝合金化技术在乏燃料干法后处理中的应用研究进展[J]. 核化学与放射化学, 2017, 39(1):13-21.
[117] 李佳, 康武, 尹荣才, 等. 超临界萃取从铀、锆、铌混合粉末中分离铀的试验研究[J]. 铀矿冶, 2017, 36(1):34-40.
[118] 沈姚崧, 李凯波, 师学明, 等. 聚变裂变混合堆处理高放超铀废物的研究[J]. 计算物理, 2017, 34(2):142-148.
[119] 刘琨, 秦东, 倪东洋. 长寿命裂变产物热堆嬗变可行性研究[J]. 科技创新与应用, 2017(11):22-24.
[120] 刘刈, 陈艳, 孔彦荣, 等. 超声波+四价铈去污技术研究[J]. 辐射防护, 2017, 37(1):39-44.
[121] 陈听雨. 电子束处理废水技术获突破[EB/OL].[2017-12-13]. http://news.xinhuanet.com/tech/2017-10/24/c_11218460-01.htm.
[122] 胡帮达. 中国核安全立法的进展、问题和对策[J]. 科技导报, 2017, 35(13):57-60.