Special lssues

Hot research topics of paleontology in 2017

  • CAI Huawei ,
  • YANG Qun
Expand
  • 1. Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China;
    2. CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing 210008, China;
    3. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing 210008, China;
    4. College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2017-12-31

  Revised date: 2018-01-03

  Online published: 2018-01-30

Abstract

We summarize the outstanding research advances of paleontology in 2017, including discoveries of the earliest fossil records, macroevolution, unique growth strategy for the Earth's first trees, meticulously preserved fossils and their behavior in ambers, egg accumulation with 3D embryos of pterosaur, new fossils from Morocco and the pan-African origin of Homo sapiens, and Late Pleistocene archaic human crania from Xuchang.

Cite this article

CAI Huawei , YANG Qun . Hot research topics of paleontology in 2017[J]. Science & Technology Review, 2018 , 36(1) : 163 -175 . DOI: 10.3981/j.issn.1000-7857.2018.01.017

References

[1] Nutman A P, Bennett V C, Friend C R L, et al. Rapid emergence of life shown by discovery of 3700 million year old microbial structures[J]. Nature, 2016, 537:535-538.
[2] Dodd M, Papineau D, Grenne T, et al. Evidence for early life in earth's oldest hydrothermal vent precipitates[J]. Nature, 2017, 543:60-64.
[3] Cates N L, Ziegler K, Schmitt A K, et al. Reduced, reused and recycled:Detrital zircons define a maximum age for the Eoarchean (ca.3750-3780 Ma) Nuvvuagittuq supracrustal belt, Québec (Canada)[J]. Earth Planet Science Letter, 2013, 362:283-293.
[4] Darling J R, et al. Eoarchean to Neoarchean evolution of the Nuvvuagittuq supracrustal belt:New insights from U-Pb zircon geochronology[J]. American Journal of Sciences, 2013, 313:844-876.
[5] O'Neil J, CarlsonRW, FrancisD, et al. Neodymium-142 evidence for Hadean mafic crust[J]. Science, 2008, 321:1828-1831.
[6] O'Neil J, Carlson R W, Paquette J-L, et al. Formation age and metamorphic history of the Nuvvuagittuq greenstone belt[J]. Precambrian Research, 2012, 220-221:23-44.
[7] Bernard S, Papineau D. Graphitic carbons and biosignatures[J]. Elements, 2014, 10:435-440.
[8] Zuilen M A, Lepland A, Arrhenius G. Reassessing the evidence for the earliest traces of life[J]. Nature, 2002, 418:627-630.
[9] Schopf J M, Kitajima K, Spicuzza M J, et al. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions[J]. PNAS, 2017-12-18. doi:10.1073/pnas.1718063115.
[10] Hagadorn J W, Xiao S, Donoghue P, et al. Cellular and subcellular structure of neoproterozoic animal embryos[J]. Science, 206, 314:291-294.
[11] Bailey J V, Joye S B, KalanetraKM. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites[J]. Nature, 2007, 445:198-201.
[12] Huldtgren T, Cunningham J A, YinC, et al. Fossilized nuclei and germination structures identify Ediacaran "Animal Embryos" as encysting protists[J]. Science, 2011, 334:1696-1699.
[13] Schiffbauer J D, Xiao S, Sen Sharma K. The origin of intracellular structures in Ediacaran metazoan embryos[J]. Geology, 2012, 40:223-226.
[14] Yin Z, Cunningham J, Vagaas K, et al. Nuclei and nucleoli in embryo-like fossils from the Ediacaran Weng'an Biota[J]. Precambrian Research, 2017, 301:145-151.
[15] Han J, Morris S, Ou Q, et al. Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)[J]. Nature, 2017, 542:228-231.
[16] Zamora S, Rahman I A, Smith A B. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution[J]. PLoS One, 2012, 7:e38296.
[17] Nanglu K, Caron J-B, Morris C, et al. Cambrian suspensionfeeding tubicolous hemichordates[J]. BMC Biology, 2016, 14:56.
[18] Ou Q, Conway M S, Han J, et al. Evidence for gill slits and a pharynx in Cambrian vetulicolians:Implications for the early evolution of deuterostomes[J]. BMC Biology, 2012, 10:81.
[19] Gillis J A, Fritzenwanker J H, Lowe C J. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network[J]. Proceedings of Royal Society of London B, 2012, 279:237-246.
[20] Schoenemanna B, Pärnaste H, Clarkson E. Structure and function of a compound eye, more than half a billion years old[J]. PNAS, 2017, 114(51):13489-13494.
[21] Zhao F, Bottjer D, Hu S, et al. Complexity and diversity of eyes in Early Cambrian ecosystems[J]. Scientific Reports, 2013, doi:10.1038/srep02751.
[22] Aria C, Caron J-B. Mandibulate convergence in an armoured Cambrian stem chelicerate[J]. BMC Evolutionary Biology, 2017, 17:261.
[23] Hoyal C J, Conway M S. Nutrient-dependent growth underpinned the Ediacaran transition to large body size[J]. Nature Ecology & Evolution, 2017, 1:1201-1204.
[24] Stein W, Mannolini F, Hernick L. Giant cladoxylopsid trees resolve the enigma of the Earth's earliest forest stumps at Gilboa[J]. Nature, 2007, 446:904-907.
[25] Xu H, Berry C, Stein W, et al. Unique growth strategy in the Earth's first trees revealed in silicified fossil trunks from China[J]. PNAS, 2017, 114(45):12009-12014.
[26] Sepkoski J. A kinetic model of Phanerozoic taxonomic diversity Ⅲ. Post-Paleozoic families and mass extinctions[J]. Paleobiology, 1984, 10:246-267.
[27] Botting J, Muir L, Zhang Y, et al. Flourishing sponge-based ecosystems after the End-Ordovician mass extinction[J]. Current Biology, 2017, 27(4):556-562.
[28] Cai C, Huang D, Newton A, et al. Early evolution of specialized termitophily in Cretaceous rove beetles[J]. Current Biology, 2017, 27(8):1229-1235.
[29] Cai C, Leschen R, Hibbett D, et al. Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous[J]. Nature Communication, 2017, doi:10.1038/ncomms14894.
[30] Sánchez-García A, Delclòs X, Engel M, et al. Marsupial brood care in Cretaceous tanaidaceans[J]. Scientific Reports, 2017, doi:10.1038/s41598-017-04050-8.
[31] Yin Z, Cai C. Huang D, et al. Specialized adaptations for springtail predation in Mesozoic beetles[J]. Scientific Reports, 2017, doi:10.1038/s41598-017-00187-8.
[32] Z. yła D, Yamamoto M, Wolf-Schwenninger K, et al. Cretaceous origin of the unique prey-capture apparatus in megadiverse genus:Stem lineage of Steninae rove beetles discovered in Burmese amber[J]. Scientific Reports, 2017, doi:10.1038/srep45904.
[33] Rio C, Haevermans T, de Franceschi D. First record of an Icacinaceae Miers fossil flower from Le Quesnoy (Ypresian, France) amber[J]. Scientific Reports, 2017, wsdoi:10.1038/s41598-017-11536-y.
[34] Dutta S, Mehrotra R, Paul S, et al. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber[J]. Scientific Reports, 2017, doi:10.1038/s41598-017-09385-w.
[35] Regalado L, Schmidt A, Appelhans M, et al. A fossil species of the enigmatic early polypod fern genus Cystodium (Cystodiaceae) in Cretaceous amber from Myanmar[J]. Scientific Reports, 2017, doi:10.1038/s41598-017-14985-7.
[36] Zheng D, Nel A, Jarzembowski E, et al. Extreme adaptations for probable visual courtship behaviour in a Cretaceous dancing damselfly[J]. Scientific Reports, 2017, doi:10.1038/srep44932.
[37] Wang X, Kellner A, Jiang S, et al. Egg accumulation with 3D embryos provides insight into the life history of a pterosaur[J]. Science, 2017, 358(6367):1197-1201.
[38] Wang X, Kellner A, Jiang S, et al. Sexually dimorphic tridimensionally preserved pterosaurs and their eggs from China[J]. Current Biology, 2014, 24:1323-1330.
[39] Hublin J, Ben-Ncer A, Bailey S, et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens[J]. Nature, 2017, 546:289-292.
[40] Richter D, Grün R, Joannes-Boyau R, et al. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age[J]. Nature, 2017, 546:293-296.
[41] Stringer C, Galway-Witham J. Palaeoanthropology:On the origin of our species[J]. Nature, 2017, 546:212-214.
[42] Schlebusch C, Malmström H, Günther T, et al. Ancient genomes from southern Africa pushes modern human divergence beyond 260,000 years ago[J]. BioRxiv, 2017, doi:http://dx.doi.org/10.1101/145409.
[43] Athreya S, Wu X. A multivariate assessment of the Dali hominin cranium from China:Morphological affinities and implications for Pleistocene evolution in East Asia[J]. American Journal of Physical Anthropology, 2017, 164(4):679-701.
[44] Li Z, Wu X, Zhou L, et al. Late Pleistocene archaic human crania from Xuchang, China[J]. Science, 2017, 355(6328):969-972.
Outlines

/