Reviews

Implementation status and gap analysis of China's carbon dioxide capture, utilization and geological storage technology roadmap (2011 edition)

  • LI Xiaochun ,
  • ZHANG Jiutian ,
  • LI Qi ,
  • LIU Guizhen ,
  • ZHANG Xian ,
  • WEI Feng
Expand
  • 1. State Key Laboratory of Geomechanics and Geotechnical Engineering;Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China;
    2. The Administrative Center for China's Agenda 21, Beijing 100038, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. Wuhan Library, Chinese Academy of Sciences, Wuhan 430071, China

Received date: 2017-02-10

  Revised date: 2017-09-08

  Online published: 2018-03-08

Abstract

The carbon dioxide capture, utilization and geological storage (CCUS) is one of the key technologies to reduce emissions of greenhouse gases (GHGs) in fighting against global climate change. With rapid economic development in China, the energy conservation and the GHG emission reduction are important, especially for the sustainable development of green gross domestic producst. In September 2011, "Technology Roadmap Study on Carbon Capture, Utilization and Storage in China" was issued by the Department of S&T for Social Development, Ministry of Science and Technology of the People's Republic of China and the Administrative Center for China's Agenda 21. This first CCUS roadmap sets some milestone objectives in 2015, 2020 and 2030, as well as some suggestions for priority technical development of fundamental researches and applied technology researches for the demonstration objectives. The first milestone (2015) has just reached. This paper reviews the latest literature and expert panel discussions, and it is shown that China has built a number of CCUS pilot and demonstration projects, and the priority deployment has also made some progress, but on the whole the current progress lags behind the target by about 2-3 years. In this context, this paper suggests that, to achieve the milestone object of 2020, it is necessary to solve the financing problem of large scale integrated projects to improve the economic efficiency of CCUS technology, and at the same time, and to solve the scale-up problems of all key technologies of CCUS technology. Finally, it is shown that when setting new targets for a coming China's CCUS roadmap (updated edition), in addition to considering the development level of mainstream technologies and emerging technologies, the impact of national policies on choices and applications of the technologies for CCUS projects should be considered.

Cite this article

LI Xiaochun , ZHANG Jiutian , LI Qi , LIU Guizhen , ZHANG Xian , WEI Feng . Implementation status and gap analysis of China's carbon dioxide capture, utilization and geological storage technology roadmap (2011 edition)[J]. Science & Technology Review, 2018 , 36(4) : 85 -95 . DOI: 10.3981/j.issn.1000-7857.2018.04.013

References

[1] Li Q, Chen Z A, Zhang J T, et al. Positioning and revision of CCUS technology development in China[J]. International Journal of Greenhouse Gas Control, 2016, 46:282-293.
[2] 科技部社会发展科技司, 中国21世纪议程管理中心. 中国碳捕集、利用与封存(CCUS)技术发展路线图研究[M]. 北京:科学出版社, 2012:50. Department of S&T for Social Development, Ministry of Science and Technology of the People's Republic of China, The Administrative Center for China's Agenda 21. Technology roadmap study on carbon capture, utilization and storage in China[M]. Beijing:Science Press, 2012:50.
[3] Zhang X, Fan J, Wei Y. Technology roadmap study on carbon capture, utilization and storage in China[J]. Energy Policy, 2013, 59:536-550.
[4] Li Q, Zhang J T, Jia L, et al. How to "capture the future by utilization of the past" in the coming revision of China CO2 technology roadmap[J]. Energy Procedia. 2014, 63:6912-6916.
[5] 李琦, 陈征澳, 张九天, 等. 中国CCUS技术路线图未来版的(更新)启示——基于世界CCS路线图透视的分析[J]. 低碳世界, 2014(7):7-8. Li Qi, Chen Zheng'ao, Zhang Jiutian, et al. Inspiration to a future update of CCUS technology roadmap in China:Based a synthetic analysis on global CCS roadmaps[J]. Low Carbon World, 2014(7):7-8.
[6] Global CCS Institute. Large-scale CCS facilities[EB/OL].[2017-01-07]. http://www.globalccsinstitute.com/projects/largescale-ccs-projects.
[7] 陈征澳, 李琦, 张贤. 欧洲能源复兴计划CCS示范项目实施进展与启示[J]. 中国人口·资源与环境, 2013, 23(10):81-86. Chen Zheng'ao, Li Qi, Zhang Xian. The implementation of European energy programme for recovery CCS demonstration projects and inspirations to China[J]. China Population, Resources and Environment, 2013, 23(10):81-86.
[8] 陆诗建, 黄凤敏, 李清方, 等. 燃烧后CO2捕集技术与工程进展[J]. 现代化工, 2015, 35(6):48-52. Lu Shijian, Huang Fengmin, Li Qingfang, et al. Advance in technology and project of post-combustion CO2 capture[J]. Modern Chemical Industry, 2015, 35(6):48-52.
[9] 郑楚光, 赵永椿, 郭欣. 中国富氧燃烧技术研发进展[J]. 中国电机工程学报, 2014, 34(23):3856-3864. Zheng Chuguang, Zhao Yongchun, Guo Xin. Research and development of oxy-fuel combustion in China[J]. Proceedings of the CSEE, 2014, 34(23):3856-3864.
[10] 张启阳, 黄凤敏, 陆诗建, 等. 燃烧前脱碳技术与工程进展[J]. 应用化工, 2015, 44(7):1331-1334. Zhang Qiyang, Huang Fengmin, Lu Shijian, et al. Advances in technology and project of before burning CO2 capture[J]. Applied Chemical Industry, 2015, 44(7):1331-1334.
[11] 翟明洋, 林千果, 马丽, 等. 电力行业碳捕集现状和发展趋势[J]. 环境科技, 2014(2):65-69. Zhai Mingyang, Lin Qianguo, Ma Li, et al. Current status and development of carbon capture in power generation industry[J]. Environmental Science and Technology, 2014(2):65-69.
[12] 钱新明, 刘彧, 刘振翼. 管道输送二氧化碳泄漏模型研究进展及展望[J]. 安全与环境学报, 2013, 13(2):201-206. Qian Xinming, Liu Yu, Liu Zhenyi. Advances and prospects of the study of modeling CO2 accidental releases from a pipeline[J]. Journal of Safety and Environment, 2013, 13(2):201-206.
[13] 张媛媛, 张建, 张煜, 等. 浅谈挪威船级社CO2管道泄漏实验[J]. 油气田环境保护, 2015, 25(5):14-17. Zhang Yuanyuan, Zhang Jian, Zhang Yu, et al. Brief discussion on the experiments of CO2 pipeline leakage of Norway DNV[J]. Environmental Protection of Oil & Gas fields, 2015, 25(5):14-17.
[14] 张建. 工业规模CO2管道泄漏试验装置设计与安装[D]. 大连:大连理工大学, 2013. Zhang Jian. Design and installation of the industrial scale CO2 pipeline leak test[D]. Dalian:Dalian University of Technology, 2013.
[15] Lü G Z, Li Q, Wang S J, et al. Key techniques of reservoir engineering and injection-production process for CO2 flooding in China's SINOPEC Shengli Oilfield[J]. Journal of CO2 Utilization, 2015, 11:31-40.
[16] Li C, Zhang K, Wang Y, et al. Experimental and numerical analysis of reservoir performance for geological CO2 storage in the Ordos Basin in China[J]. International Journal of Greenhouse Gas Control, 2016, 45:216-232.
[17] 石晖. 二氧化碳井喷泄漏扩散不确定性分析和危险水平分级研究[D]. 北京:中国科学院大学, 2016. Shi Hui. Identification of key factors that influenced leakage and diffusion of CO2 from a wellbore and classification of their corresponding hazard levels[D]. Beijing:University of Chinese Academy of Sciences, 2016.
[18] 石晖, 刘兰翠, 李琦. CO2地质封存与高放射性核废物地中处置的地质环境影响对比[J]. 中国人口·资源与环境, 2015, 25(5):203-207. Shi Hui, Liu Lancui, Li Qi. A comparative study of geo-environmental impacts of CO2 geological storage and high level nuclear waste geo-disposal[J]. China Population, Resources and Environment, 2015, 25(5):203-207.
[19] 王莎. 高浓度CO2对土壤微生物的影响研究[D]. 西安:西北大学, 2014. Wang Sha. Effects of high concentration CO2 on soil microbes[D]. Xi'an:Northwest University, 2014.
[20] 张慧慧, 李春荣, 邓红章, 等. 二氧化碳入侵土壤包气带对微生物群落的影响[J]. 安全与环境学报, 2016, 16(2):377-381. Zhang Huihui, Li Chunrong, Deng Hongzhang, et al. Effect of carbon dioxide permeation into soil's unsaturated layer on the microbial community[J]. Journal of Safety and Environment, 2016, 16(2):377-381.
[21] 田地, 马欣, 查良松, 等. 地质封存CO2泄漏对近地表陆地生态系统的影响综述[J]. 生态与农村环境学报, 2013, 29(2):137-145. Tian Di, Ma Xin, Zha Liangsong, et al. Review of impact of CO2 leakage from geologic storage on near-surface terrestrial ecological system[J]. Journal of Ecology and Rural Environment, 2013, 29(2):137-145.
[22] 邵强. 高浓度二氧化碳对水体水质及鱼类的影响研究[D]. 西安:西北大学, 2015. Shao Qiang. Elevated CO2 concentration on surface water quality and carassius auratus research[D]. Xi'an:Northwest University, 2015.
[23] 田地. 地质封存CO2泄漏对农田作物及其土壤环境的影响研究[D]. 芜湖:安徽师范大学, 2013. Tian Di. Research on the effect of captured CO2 leakage on crops, grass and soil environment[D]. Wuhu:Anhui Normal University, 2013.
[24] 伍洋, 马欣, 李玉娥, 等. 地质封存CO2泄漏对农田生态系统的影响评估及耐受阈值[J]. 农业工程学报, 2012, 28(2):196-205. Wu Yang, Ma Xin, Li Yu'e, et al. Impact assessment and tolerable threshold value of CO2 leakage from geological storage on agro-ecosystem[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2):196-205.
[25] 倪建宇, 初凤友, 金翔龙. CO2海洋封存的研究现状[C]//二氧化碳减排控制技术与资源化利用研讨会论文集. 上海:中国资源综合利用协会, 2009:81-85. Ni Jianyu, Chu Fengyou, Jin Xianglong. An overview of ocean storage of carbon dioxide[C]//Proceedings of the Carbon dioxide emission reduction control technologies and resource utilization. Shanghai:China Association of Circular Economy, 2009:81-85.
[26] 霍传林. 我国近海二氧化碳海底封存潜力评估和封存区域研究[D]. 大连:大连海事大学, 2014. Huo Chuanlin. Study on the potential evaluation and the storage areas of the carbon dioxide seabed storage in offshore China[D]. Dalian:Dalian Maritime University, 2014.
[27] 刘学浩. 新型酸气流通反应仪的研发[D]. 北京:中国科学院大学, 2013. Liu Xuehao. Development of a novel acid gas flooding apparatus with chemical reaction[D]. Beijing:University of Chinese Academy of Sciences, 2013.
[28] Li Q, Liu G, Liu X. Development of management information system of global acid gas injection projects[M]. New York:Wiley, 2014:243-254.
[29] 刘学浩, 李琦, 杜磊, 等. 高含硫气田酸气回注与硫回收经济性对比[J]. 天然气技术与经济, 2012, 6(4):55-59. Liu Xuehao, Li Qi, Du Lei, et al. Economical comparison of both acid-gas reinjection and sulfur recovery in high-sour gasfields[J]. Natural Gas Technology and Economy, 2012, 6(4):55-59.
[30] 孙立辉, 尹龙飞. 酸气回注工艺流程及安全风险研究[J]. 辽宁化工, 2014, 43(1):94-96. Sun Lihui, Yin Longfei. Research on the acid gas Reinjection process and security risk[J]. Liaoning Chemical Industry, 2014, 43(1):94-96.
[31] 李琦, 匡冬琴, 刘桂臻, 等. 酸气回注——以土库曼斯坦阿姆河右岸封存场地适应性评价为例[J]. 地质论评, 2014, 60(5):1133-1146. Li Qi, Kuang Dongqin, Liu Guizhen, et al. Acid gas injection:A suitability evaluation for sequestration site in Amu Darya Basin, Turkmenistan[J]. Geological Review, 2014, 60(5):1133-1146.
[32] Zheng C, Liu Z, Xiang J, et al. Fundamental and technical challenges for a compatible design scheme of oxyfuel combustion technology[J]. Engineering, 2015, 1(1):139-149.
[33] Asian Development Bank. Roadmap for carbon capture and storage demonstration and deployment in the People's Republic of China[M]. Manila, Philippines:Asian Development Bank, 2015.
[34] 匡冬琴, 李琦, 陈征澳, 等. 全球CCUS废弃井法规现状及其对中国的启示[J]. 天然气与石油, 2015, 33(4):37-41. Kuang Dongqin, Li Qi, Chen Zheng'ao, et al. Global status of abandoned wells regulations and it's enlightenment for China[J]. Natural Gas and Oil, 2015, 33(4):37-41.
[35] 李琦, 宋然然, 匡冬琴, 等. 二氧化碳地质封存与利用工程废弃井技术的现状与进展[J]. 地球科学进展, 2016, 31(3):225-235. Li Qi, Song Ranran, Kuang Dongqin, et al. Status and advances of abandoned process of wells for CO2 geological storage[J]. Advances in Earth Science, 2016, 31(3):225-235.
[36] Chen Z, Li Q, Liu L, et al. A large national survey of public perceptions of CCS technology in China[J]. Applied Energy, 2015, 158:366-377.
[37] Li Q, Wei Y, Chen Z. Water-CCUS nexus:Challenges and opportunities of China's coal chemical industry[J]. Clean Technologies and Environmental Policy 2016, 18(3):775-786.
[38] 李琦, 魏亚妮. 二氧化碳地质封存联合深部咸水开采技术进展[J]. 科技导报, 2013, 31(27):65-70. Li Qi, Wei Yani. Progress in combination of CO2 geological storage and deep saline water recovery[J]. Science & Technology Review, 2013, 31(27):65-70.
[39] 翟明洋, 林千果, 钟林发, 等. CO2捕集封存联合地下咸水利用经济评价[J]. 现代化工, 2016, 36(4):8-12. Zhai Minyang, Lin Qianguo, Zhong Linfa, et al. Economic assessment of carbon capture and storage combined with utilization of deep saline water[J]. Modern Chemical Industry, 2016, 36(4):8-12.
[40] 林则夫, 文书洋, 宋斌. 基于实物期权的碳税政策对CCS项目投资决策影响研究[J]. 中国人口·资源与环境, 2015, 25(9):13-20. Lin Zefu, Wen Shuyang, Song Bin. Research on the effect of carbon tax policy on CCS projects investment decision based on real option[J]. China Population, Resources and Environment, 2015, 25(9):13-20.
Outlines

/