CAS-ESA geostationary millimeter wave atmospheric sounder prototype: Drawing up a new blueprint for passive microwave remote sensing development

  • WU Ji ,
  • LIU Hao ,
  • ZHANG Cheng
Expand
  • 1. National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-01-30

  Revised date: 2018-02-14

  Online published: 2018-03-08

Abstract

A major requirement of microwave atmospheric sounder onboard geostationary satellite arises in the area of passive remote sensing and meteorological research. Developing geostationary microwave sounder is also a national strategy demand of China. The successful development of the CAS-ESA geostationary millimeter wave atmospheric sounder prototype based on synthetic aperture radiometer paves the way to reaching this goal. This paper briefly reviewed the research background and the current status of the relevant technology over the world, introduced the developing roadmap and achievements in china, stated the significance of the successful development of this prototype, and finally highlighted the prospect of near future application in China's Fengyun-4 mission.

Cite this article

WU Ji , LIU Hao , ZHANG Cheng . CAS-ESA geostationary millimeter wave atmospheric sounder prototype: Drawing up a new blueprint for passive microwave remote sensing development[J]. Science & Technology Review, 2018 , 36(4) : 96 -100 . DOI: 10.3981/j.issn.1000-7857.2018.04.014

References

[1] Mcmullan K D, Brown M A, Martin-Neira M, et al. SMOS:The payload[J]. IEEE Transactions on Geoscience & Remote Sensing, 2008, 46(3):594-605.
[2] Gasiewski A J, Voronovich A, Weber B L, et al. Geosynchronous microwave (GEM) sounder/imager observation system simulation[C]//Proceedings of IGARSS, Volume3. New York:IEEE, 2003:1209-1211.
[3] Bizzarri B. Requirements and perspectives for MW/Sub-MM sounding from geostationary satellite[C]//Proceedings of the 2002 EUMETSAT Meteorological Satellite Conference. Darmstadt:EUMETSAT, 2002:97-105.
[4] Lambrigtsen B, Tanner A, Gaier T, et al. Prototyping a new earth observing sensor-GeoSTAR[C]//Proceedings of the 2007 IEEE Aerospace Conference. New York:IEEE, 2007:1-9.
[5] Christensen J, Carlstrom A, Ekstrom H, et al. GAS:the geostationary atmospheric sounder[C]//Proceedings of IGARSS 2007. New York:IEEE, 2007:223-226.
[6] 张如意, 李卿, 董瑶海, 等. 静止轨道气象卫星观测系统发展设想[J]. 上海航天, 2012, 29(5):7-13. Zhang Ruyi, Li Qing, Dong Yaohai, et al. Development plan of geostationary meteorological satellite observation system[J]. Aerospace Shanghai, 2012, 29(5):7-13.
[7] 郭阳, 卢乃锰, 谷松岩. 毫米/亚毫米波探测大气温度和湿度的通道选择[J]. 应用气象学报, 2010, 21(6):716-723. Guo Yang, Lu Naimeng, Gu Songyan. Channel selection of millimeter/submillimeter wave for temperature and humidity sounding[J]. Journal of Applied Meteorological Science, 2010, 21(6):716-723.
[8] 卢乃锰, 谷松岩. 静止轨道微波大气探测的技术现状与发展展望[J].气象科技进展, 2016, 6(1):120-123. Lu Naimeng, Gu Songyan. The status and prospects of atmospheric microwave sounding by geostationary meteorological Satellite[J]. Advances in Meteorological Science and Technology, 2016, 6(1):120-123.
[9] Liu H, Wu J, Zhang S W, et al. Conceptual design and breadboarding activities of geostationary interferometric microwave sounder[C]//Proceedings of IGARSS. New York:IEEE, 2009:1039-1042.
[10] Zhang C, Liu H, Wu J, et al. Imaging analysis and first results of the geostationary interferometric microwave sounder demonstrator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1):207-218.
[11] 吴季, 刘浩, 张成, 等. 一种用于毫米波和亚毫米波的双模辐射计系统:中国, 201110163880.0[P]. 2011-11-23. Wu Ji, Liu Hao, Zhang Cheng, et al. A dual mode millimeter/submillimeter wave radiometer system:China, 201110163880. 0[P]. 2011-11-23.
Outlines

/