Scientifc Comments

Rapid development of genomics and earth science, paleontology into the new era: Hot research topics in paleontology in 2017

  • ZHU Min ,
  • CHEN Pingfu
Expand
  • CAS Key Laboratory of Vertebrate Evolution and Human Origins;Institute of Vertebrate Paleonotology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China

Received date: 2018-01-08

  Revised date: 2018-01-30

  Online published: 2018-03-28

Abstract

Focusing on the outstanding contributions made by Chinese paleontologists, this paper reviews the research advances and hotspots in paleontology around the world in 2017, involving excellent studies on early life, early deuterostomes, fossil vertebrates, ancient humans, ancient DNA, and evolutionary paleobiology.

Cite this article

ZHU Min , CHEN Pingfu . Rapid development of genomics and earth science, paleontology into the new era: Hot research topics in paleontology in 2017[J]. Science & Technology Review, 2018 , 36(5) : 14 -22 . DOI: 10.3981/j.issn.1000-7857.2018.05.002

References

[1] Hublin J J, Ben-Ncer A, Bailey S E, et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens[J]. Nature, 2017, 546(7657):289-292.
[2] Richter D, Grun R, Joannes-Boyau R, et al. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age[J]. Nature, 2017, 546(7657):293-296.
[3] Li, Z Y, Wu, X J, Zhou, L P, et al. Late Pleistocene archaic human crania from Xuchang, China[J]. Science, 2017, 355(6328):969-972.
[4] Nengo I, Tafforeau P, Gilbert C C, et al. New infant cranium from the African Miocene sheds light on ape evolution[J]. Nature, 2017, 548(7666):169-174.
[5] Posth C, Wissing C, Kitagawa K, et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals[J]. Nature Communications, 2017, 8:16046.
[6] Slon V, Hopfe C, Weiß C L, et al. Neandertal and Denisovan DNA from Pleistocene sediments[J]. Science, 2017, 356(6338):605-608.
[7] Librado P, Gamba C, Gaunitz C, et al. Ancient genomic changes associated with domestication of the horse[J]. Science, 2017, 356(6336):442-445.
[8] Ottoni C, Van Neer W, De Cupere B, et al. The palaeogenetics of cat dispersal in the ancient world[J]. Nature Ecology & Evolution, 2017, 1(7):139.
[9] Schopf J W, Packer B M. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia[J]. Science, 1987, 237(4810):70-73.
[10] Schopf J W. Microfossils of the early Archean Apex Chert:New evidence of the antiquity of life[J]. Science, 1993, 260(5108):640-646.
[11] Schopf J W, Kitajima K, Spicuzza M J, et al. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions[J]. PNAS, 2017, doi:10.1073/pnas.1718063115.
[12] Djokic T, Van Kranendonk M J, Campbell K A, et al. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits[J]. Nature Communications, 2017, 8:15263.
[13] Dodd M S, Papineau D, Grenne T, et al. Evidence for early life in Earth's oldest hydrothermal vent precipitates[J]. Nature, 2017, 543(7643):60-64.
[14] Bengtson S, Rasmussen B, Ivarsson M, et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt[J]. Nature Ecology & Evolution, 2017, 1(6):141.
[15] Han J, Conway-Morris S, Ou Q, et al. Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)[J]. Nature, 2017b, 542(7640):228-231.
[16] Venkatesh B, Lee A P, Ravi V, et al. Elephant shark genome provides unique insights into gnathostome evolution[J]. Nature, 2014, 505(7482):174-179.
[17] Coates M I, Gess R W, Finarelli J A, et al. A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes[J]. Nature, 2017, 541(7636):208-211.
[18] Giles S, Xu G-H, Near T J, et al. Early members of ‘living fossil’ lineage imply later origin of modern ray-finned fishes[J]. Nature, 2017, 549(7671):265-268.
[19] Zhu M, Ahlberg P E, Zhao W-J, et al. A Devonian tetrapodlike fish reveals substantial parallelism in stem tetrapod evolution[J]. Nature Ecology & Evolution, 2017, 1(10):1470-1476.
[20] Baron M G, Norman D B, Barrett P M. A new hypothesis of dinosaur relationships and early dinosaur evolution[J]. Nature, 2017, 543(7646):501-506.
[21] Padian K. Dividing the dinosaurs[J]. Nature, 2017, 543(7646):494-495.
[22] Langer M C, Ezcurra M D, Rauhut O W M, et al. Untangling the dinosaur family tree[J]. Nature, 2017, 551(7678):E1-E3.
[23] Wang X L, Kellner A W A, Jiang S X, et al. Egg accumulation with 3D embryos provides insight into the life history of a pterosaur[J]. Science, 2017b, 358(6367):1197-1201.
[24] Wang M, O'Connor J K, Pan Y, et al. A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph plough-shaped pygostyle[J]. Nature, Communications, 2017, 8:14141.
[25] Han G, Mao F Y, Bi S D, et al. A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones[J]. Nature, 2017, 551(7681):451-456.
[26] Luo Z X, Meng Q J, Grossnickle D M, et al. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem[J]. Nature, 2017, 548(7667):326-329.
[27] Meng, Q-J, Grossnickle D M, Liu D, et al. New gliding mammaliaforms from the Jurassic[J]. Nature, 2017, 548(7667):291-296.
[28] Van Valen L. A new evolutionary law[J]. Evolutionary Theory, 1973, 1:1-30.
[29] Marshall C R. A tip of the hat to evolutionary change[J]. Nature, 2017, 552(7683):35-37.
[30] Zliobaite I, Fortelius M, Stenseth N C. Reconciling taxon senescence with the Red Queen's hypothesis[J]. Nature, 2017, 552(7683):92-95.
[31] Schmitz B, Yin Q Z, Sanborn M E, et al. A new type of solarsystem material recovered from Ordovician marine limestone[J]. Nature Communications, 2016, 7:11851.
[32] Lindskog A, Costa M M, Rasmussen C M Ø, et al. Refined Ordovician timescale reveals no link between asteroid breakup and biodiversification[J]. Nature Communications, 2017, 8:14066.
[33] Edwards C T, Saltzman M R, Royer D L, et al. Oxygenation as a driver of the Great Ordovician Biodiversification Event[J]. Nature Geoscience, 2017, 10:925-929.
[34] Xiang L, Schoepfer S D, Shen S Z, et al. Evolution of oceanic molybdenum and uranium reservoir size around the Ediacaran-Cambrian transition:Evidence from western Zhejiang, South China[J]. Earth and Planetary Science Letters, 2017, 464:84-94.
[35] Zhang J, Fan T, Zhang Y, et al. Heterogenous oceanic redox conditions through the Ediacaran-Cambrian boundary limited the metazoan zonation[J]. Scientific Reports, 2017, 7:8550.
Outlines

/