Spescial Issues

Progress in optogenetics

  • LU Qi
Expand
  • School of Medicine, Wayne State University, Detroit 48201, Michigan, United States

Received date: 2017-12-01

  Revised date: 2018-02-13

  Online published: 2018-03-28

Abstract

Optogenetics technology refers to transfection of specific genes into neurons and the neural activity can be turned on and off with the light. After ten years of development, optogenetics has become a mature and stable routine biological technology. This review focuses on the history of optogenetics, its development and various newly developed toolboxes. Finally, the application of optogenetics in neuroscience from the subcellular level to the neural network level and the clinical application in the treatment of blindness and analgesia are introduced.

Cite this article

LU Qi . Progress in optogenetics[J]. Science & Technology Review, 2018 , 36(5) : 39 -52 . DOI: 10.3981/j.issn.1000-7857.2018.05.005

References

[1] Deisseroth K, Feng G, Majewska A K, et al. Next-generation optical technologies for illuminating genetically targeted brain circuits[J]. Journal of Neuroscience, 2006, 26(41):10380-10386.
[2] Miesenböck G. The optogenetic catechism[J]. Science, 2009, 326(5951):395-399.
[3] Zemelman B V, Lee G A, Ng M, et al. Selective photostimulation of genetically chARGed neurons[J]. Neuron, 2002, 33(1):15-22.
[4] Miesenböck G. Lighting up the brain[J]. Scientifc American, 2008, 299(4):52-59.
[5] Miesenböck G, Kevrekidis I G. Optical imaging and control of genetically designated neurons in functioning circuits[J]. Annual Review of Neurosci, 2005, 28:533-563.
[6] Lima S Q, Miesenböck G. Remote control of behavior through genetically targeted photostimulation of neurons[J]. Cell, 2005, 121(1):141-152.
[7] Banghart M, Borges K, Isacoff E, et al. Light-activated ion channels for remote control of neuronal firing[J]. Nature Neuroscience, 2004, 7(12):1381-1386.
[8] Nagel G, Ollig D, Fuhrmann M, et al. Channelrhodopsin-1:A light-gated proton channel in green algae[J]. Science, 2002, 296(5577):2395-2398.
[9] Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. PNAS, 2003, 100(24):13940-13945.
[10] Lin J Y, Knutsen P M, Muller A, et al. ReaChR:A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation[J]. Nature Neuroscience, 2013, 16(10):1499-1508.
[11] Boyden E S, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 2005, 8(9):1263-1268.
[12] Li X, Gutierrez D V, Hanson M G, et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin[J]. PNAS, 2005, 102(49):17816-17821.
[13] Ishizuka T, Kakuda M, Araki R, et al. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels[J]. Neuroscience Research, 2006, 54(2):85-94.
[14] Bi A, Cui J, Ma Y P, et al. Ectopic expression of a microbialtype rhodopsin restores visual responses in mice with photoreceptor degeneration[J]. Neuron, 2006, 50(1):23-33.
[15] Miesenbock G. Optogenetic control of cells and circuits[J]. Annual Review of Cell and Developmental Biology, 2011, 27:731-758.
[16] Iseki M, Matsunaga S, Murakami A, et al. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis[J]. Nature, 2002, 415(6875):1047-1051.
[17] Volgraf M, Gorostiza P, Numano R, et al. Allosteric control of an ionotropic glutamate receptor with an optical switch[J]. Nature Chemical Biology, 2006, 2(1):47-52.
[18] Kennedy M J, Hughes R M, Peteya L A, et al. Rapid bluelight-mediated induction of protein interactions in living cells[J]. Nature Methods, 2010, 7(12):973-975.
[19] Vitaterna M H, Selby C P, Todo T, et al. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2[J]. PNAS, 1999, 96(21):12114-12119.
[20] Shimizu-Sato S, Huq E, Tepperman J M, et al. A light-switchable gene promoter system[J]. Nature Biotechnology, 2002, 20(10):1041-1044.
[21] Polosukhina A, Litt J, Tochitsky I, et al. Photochemical restoration of visual responses in blind mice[J]. Neuron, 2012, 75(2):271-282.
[22] Tochitsky I, Polosukhina A, Degtyar V E, et al. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells[J]. Neuron, 2014, 81(4):800-813.
[23] Feldbauer K, Zimmermann D, Pintschovius V, et al. Channelrhodopsin-2 is a leaky proton pump[J]. PNAS, 2009, 106(30):12317-12322.
[24] Lin J Y. A user's guide to channelrhodopsin variants:Features, limitations and future developments[J]. Experimental Physiology, 2011, 96(1):19-25.
[25] Bamann C, Kirsch T, Nagel G, et al. Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function[J]. Journal of Molecular Biology, 2008, 375(3):686-694.
[26] Lin J Y, Lin M Z, Steinbach P, et al. Characterization of engineered channelrhodopsin variants with improved properties and kinetics[J]. Biophysical Journal, 2009, 96(5):1803-1814.
[27] Pan Z H, Ganjawala T H, Lu Q, et al. ChR2 mutants at L132 and T159 with improved operational light sensitivity for vision restoration[J]. PLoS One, 2014, 9(6):e98924.
[28] Nagel G, Szellas T, Kateriya S, et al. Channelrhodopsins:Directly light-gated cation channelsv. Biochemical Society Transactions, 2005, 33(4):863-866.
[29] Wen L, Wang H, Tanimoto S, et al. Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin[J]. PLoS One, 2010, 5(9):e12893.
[30] Berndt A, Yizhar O, Gunaydin L A, et al. Bi-stable neural state switches[J]. Nature Neuroscience, 2009, 12(2):229-234.
[31] Kleinlogel S, Feldbauer K, Dempski R E, et al. Ultra lightsensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh[J]. Nature Neuroscience, 2011, 14(4):513-518.
[32] Chuong A S, Miri M L, Busskamp V, et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin[J]. Nature Neuroscience, 2014, 17(8):1123-1129.
[33] Berthold P, Tsunoda S P, Ernst O P, et al. Channelrhodopsin-1 initiates phototaxis and photophobic responses in chlamydomonas by immediate light-induced depolarization[J]. Plant Cell, 2008, 20(6):1665-1677.
[34] Zhang F, Prigge M, Beyriere F, et al. Red-shifted optogenetic excitation:A tool for fast neural control derived from Volvox carteri[J]. Nature Neuroscience, 2008, 11(6):631-633.
[35] Tsunoda S P, Hegemann P. Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation[J]. Photochem Photobiol, 2009, 85(2):564-569.
[36] Berndt A, Lee S Y, Ramakrishnan C, et al. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel[J]. Science, 2014, 344(6182):420-424.
[37] Wietek J, Wiegert J S, Adeishvili N, et al. Conversion of channelrhodopsin into a light-gated chloride channel[J]. Science, 2014, 344(6182):409-412.
[38] Prigge M, Schneider F, Tsunoda S P, et al. Color-tuned channelrhodopsins for multiwavelength optogenetics[J]. Journal of Biological Chemistry, 2012, 287(38):31804-31812.
[39] Tomita H, Sugano E, Murayama N, et al. Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1[J]. Molecular Therapy, 2014, 22(8):1434-1440.
[40] Govorunova E G, Sineshchekov O A, Li H, et al. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis[J]. Journal of Biological Chemistry, 2013, 288(41):29911-29922.
[41] Klapoetke N C, Murata Y, Kim S S, et al. Independent optical excitation of distinct neural populations[J]. Nature Methods, 2014, 11(3):338-346.
[42] Govorunova E G, Sineshchekov O A, Janz R, et al. Natural light-gated anion channels:A family of microbial rhodopsins for advanced optogenetics[J]. Science, 2015, 349(6248):647-650.
[43] Surace E M, Auricchio A. Versatility of AAV vectors for retinal gene transfer[J]. Vision Research, 2008, 48(3):353-359.
[44] Kay C N, Ryals R C, Aslanidi G V, et al. Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors[J]. PLoS One, 2013, 8(4):e62097.
[45] Petrs-Silva H, Dinculescu A, Li Q, et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors[J]. Molecular Therapy, 2009, 17(3):463-471.
[46] Daya S, Berns K I. Gene therapy using adeno-associated virus vectors[J]. Clinical Microbiology Reviews, 2008, 21(4):583-593.
[47] Gray S J, Blake B L, Criswell H E, et al. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB)[J]. Molecular Therapy, 2010, 18(3):570-578.
[48] Cronin T, Vandenberghe L H, Hantz P, et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter[J]. EMBO Molecular Medicine, 2014, 6(9):1175-1190.
[49] Lu Q, Ganjawala T H, Ivanova E, et al. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates[J]. Gene Therapy, 2016, 23(8/9):680-689.
[50] Macé E, Caplette R, Marre O, et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores On and Off visual responses in blind mice[J]. Molecular Therapy, 2015, 23(1):7-16.
[51] Adamantidis A R, Zhang F, Aravanis A M, et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons[J]. Nature, 2007, 450(7168):420-424.
[52] Carter M E, Yizhar O, Chikahisa S, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons[J]. Nature Neuroscience, 2010, 13(12):1526-1533.
[53] Rolls A, Colas D, Adamantidis A, et al. Optogenetic disruption of sleep continuity impairs memory consolidation[J]. PNAS, 2011, 108(32):13305-13310.
[54] Liu X, Ramirez S, Pang P T, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall[J]. Nature, 2012, 484(7394):381-385.
[55] Hegemann P. Algal sensory photoreceptors[J]. Annual Review of Plant Biology, 2008, 59:167-189.
[56] Ivanova E, Hwang G S, Pan Z H, et al. Evaluation of AAVmediated expression of Chop2-GFP in the marmoset retina[J]. Investigative Ophthalmology & Visual Sciene, 2010, 51(10):5288-5296.
[57] Boye S E, Boye S L, Lewin A S, et al. A comprehensive review of retinal gene therapy[J]. Molecular Therapy, 2013, 21(3):509-519.
[58] Iyer S M, Montgomery K L, Towne C, et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice[J]. Nature Biotechnology, 2014, 32(3):274-278.
[59] Vogt C C, Bruegmann T, Malan D, et al. Systemic gene transfer enables optogenetic pacing of mouse hearts[J]. Cardiovascular Research, 2015, 106(2):338-343.
[60] Parker K L, Kim Y, Alberico S L, et al. Optogenetic approaches to evaluate striatal function in animal models of Parkinson disease[J]. Dialogues in Clinical Neuroscience, 2016, 18(1):99-107.
[61] Kravitz A V, Freeze B S, Parker P R, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry[J]. Nature, 2010, 466(7306):622-626.
[62] Ingles-Prieto A, Reichhart E, Schelch K, et al. The optogenetic promise for oncology:Episode I[J]. Molecular & Cellular Oncology, 2014, 1(4):e964045.
Outlines

/