[1] NASA's James Webb Space Telescope to be Launched Spring 2019[EB/OL].[2017-09-29]. https://www.nasa.gov/feature/nasas-james-webb-space-telescope-to-be-launched-spring-2019.
[2] Joyce R, Boyer C, Daggert L, et al. The laser guide star facility for the thirty meter telescope[J]. Proceedings of SPIE, 2006, 6272:1H1.
[3] China TMT. 中国参与国际巨型光学三十米望远镜(CTMT)情况简介[EB/OL].[2017-09-29]. http://ctmt.bao.ac.cn.ChinaTMT. Introduction of China's participation in the international giant optical CTMT[EB/OL].[2017-09-29]. http://ctmt.bao.ac.cn
[4] 周仁忠. 自适应光学[M]. 北京:国防工业出版社, 1996. Zhou Renzhong. Adaptive optics[M]. Beijing:National Defense Industry Press, 1996.
[5] Fugate R Q, Fried D L, Ameer G A, et al. Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star[J]. Nature, 1991(6340), 353:144-146.
[6] Kupke R, Gavel D T, Rockosi C M, et al. Shane AO:An enhanced adaptive optics and infrared imaging system for the Lick Observatory 3-meter Telescope[J]. Proceedings of SPIE, 2012, 8447:125.
[7] Otarola A, Hickson P, Gagne R, et al. On-sky tests of a highpower pulsed laser for sodium laser guide star adaptive optics[J]. Journal of Astronomical Instrumentation, 2016, 5(1):1650001.
[8] Thompson L A, Gardner C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy[J]. Nature, 1987, 328(6127):229-231.
[9] Jelonek M P, Fugate R Q, Cleis R A, et al. Characterization of artificial guide stars generated in the mesospheric sodium layer with a sum-frequency laser[J]. Journal of the Optical Society of America B, 1994, 11(2):806.
[10] Xie S Y, Bo Y, Xu J L, et al. A 7.5 W quasi-continuouswave sodium D2 laser generated from single-pass sum-frequency generation in LBO crystal[J]. Applied Physics B, 2011, 102(4):781-787.
[11] Kenneth A, James B, James M. Sodium laser guide star system at Lawrence Livermore National Laboratory:System description and experimental results[J]. Proceedings of SPIE, 1994, 2201:326-341.
[12] Max C E, Gavel D T, Olivier S S, et al. Issues in the design and optimization of adaptive optics and laser guide stars for the Keck telescopes[J]. Proceedings of SPIE, 1994, 2201:189-200.
[13] Quirrenbach A, Hackenberg W K P, Holstenberg H C, et al. Sodium laser guide star system of ALFA[J] Proceedings of SPIE, 1997, 3126:35-43.
[14] Jeys T H, Brailove A A. Mooradian Aram. Sum frequency generation of sodium resonance radiation[J]. Applied Optics, 1989, 28(13):2588-2591.
[15] Lu Y F, Bo Y, Xie S Y, et al. An 8.1 W diode pumped solidstate quasi-continuous-wave yellow laser at 589 nm by intracavity sum-frequency mixing generation[J]. Optics Communications, 2008, 281(22):5596-5600.
[16] Lu Y F, Xie S Y, Bo Y, et al. Generation of tunable and narrow linewidth continuous-wave yellow laser by sum-frequency mixing of diode-pumped solid-state Nd:YAG ring lasers[J]. Optics Communications, 2009, 282(17):3573-3576.
[17] Fugate R Q, Denman C A, Hillman P D, et al. Progress toward a 50-watt facility-class sodium guidestar pump laser[J]. Proceedings of SPIE, 2004, 5490:1010-1020.
[18] 鲁远甫. 高功率高光束质量全固态黄光激光技术研究[D]. 北京:中国科学院物理研究所, 2009. Lu Yuanfu. Research on the technology of all solid state yellow laser with high power and high beam quality[D]. Beijing:Institute of Physics, Chinese Academy of Sciences, 2009.
[19] Hayano Y, Saito Y, Ito M, et al. The laser guide star facility for Subaru Telescope[J]. Proceedings of SPIE, 2006, 6272:627247.
[20] Saitoa Y, Hayano Y, Saito N, et al. 589 nm sum-frequency generation laser for the LGS/AO of Subaru Telescope[J]. Proceedings of SPIE, 2006, 6272:627246.
[21] Tracy A J, Hankla A K, Lopez C A, et al. High-power solidstate sodium beacon laser guide star for the Gemini North Observatory[J]. Proceedings of SPIE, 2006, 6100:61001H.
[22] Hankla A K, Bartholomew J, Groff K, et al. 20 W and 50 W solid-state sodium beacon guidestar laser systems for the Keck I and Gemini South Telescopes[J]. Proceedings of SPIE, 2006, 61:62721G.
[23] Lee I, Jalali M, Vanasse N, et al. 20 W and 50 W guidestar laser system update for the Keck I and Gemini South telescopes[J]. Proceedings of SPIE, 2008, 7015:70150N.
[24] Sawruk N, Lee I, Jalali M, et al. System overview of 30 W and 55 W sodium guide star laser systems[J]. Proceedings of SPIE, 2010, 7736:77361Y.
[25] 刘杰, 王建立, 吕天宇, 等. 全固态589 nm激光器及其钠导星激发亮度[J]. 光学精密工程, 2014, 22(12):3199-3204. Liu Jie, Wang Jianli, Lv Tianyu, et al. All-solid-state 589 nm laser and the brightness of excited sodium guide star[J]. Optics and Precision Engineering, 2014, 22(12):3199-3204.
[26] 刘杰, 王建立, 王禹凝, 等. 自适应光学技术在钠激光导星发射光路中的应用初步实验研究[C]//长沙:第三届大气光学及自适应光学技术发展研讨会会议论文, 2017. Liu Jie, Wang Jianli, Wang Yuning, et al. Fundamental experimental research on application of adaptive optics in sodium laser guide star launch telescope[C]//Changsha:The Third Symposium on the Technical Development of Atmospheric Optics and Adaptive Optics, 2017.
[27] Moosmuller H, Vance J D. Sum-frequency generation of continuous-wave sodium D2 resonance radiation[J]. Optics Letters, 1997, 22(15):1135.
[28] Vance J D, She C Y, Moosmüller H. Continuous-wave, all-solid-state, single-frequency 400 mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator[J]. Applied Optics, 1998, 37(21):4891-4896.
[29] Bienfang J C, Denman C A, Grime B W, et al. 20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers[J]. Optics Letters, 2003, 28(22):2219-2221.
[30] Denman C A, Hillman P D, et al. Realization of a 50-watt facility-class sodium guidestar pump laser[J]. Proceedings of SPIE, 2005, 5707:46.
[31] Kibblewhite E J, Shi F. Design and field tests of an 8-W sum-frequency laser for adaptive optics[J]. Proceedings of SPIE, 1998, 3353:300-309.
[32] Velur V, Kibblewhite E J, Dekany R G, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star test bed[J]. Proceedings of SPIE, 2004, 5490:1033-1040.
[33] Dekany R, Bouchez A, Britton M, et al. PALM-3000:Visible light AO on the 5.1-meter Telescope[J]. Proceedings of SPIE, 2006, 6272:62720G.
[34] Wang P Y, Xie S Y, Bo Y, et al. 33Wquasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO[J]. Chinese Physics B, 2014, 23(9):094208.
[35] Wei K, Bo Y, Xue X H, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[J] Proceedings of SPIE, 2012, 8447:84471R.
[36] Bian Q, Bo Y, Zuo J W, et al. High-power QCW microsecond-pulse solid-state sodium beacon laser with spiking suppression and D2b re-pumping[J]. Optics Letters, 2016, 41(8):1732-1735.
[37] Lu Y H, Fan G B, Ren H J, et al. High-average-power narrow-line-width sum frequency generation 589 nm laser[J] Proceedings of SPIE, 2015, 9650:965008.
[38] Taylor L R, Feng Y, Bonaccini C D. High power narrowband 589 nm frequency doubled fiber laser source[J]. Optics Express, 2009, 17(17):14687-14693.
[39] Feng Y, Taylor L R, Bonaccini C D. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star[J]. Optics Express, 2009, 17(21):19021-19026.
[40] Feng Y, Taylor L R, Bonaccini C D. 39 W narrow linewidth Raman fiber amplifier with frequency doubling to 26. 5 W at 589 nm[J]. San Jose:Frontiers in Optics 2009, PDAA4.
[41] Bonaccini C D, Feng Y, Hackenberg W, et al. Laser development for sodium laser guide stars at ESO[J]. The Messenger, 2010, 139:12-19.
[42] Taylor L R, Feng Yan, Bonaccini C D. 50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fiber amplifiers[J]. Optics Express, 2010, 18(8):8540-8555.
[43] Zhang L, Jiang H W, Cui S Z, et al. Versatile Raman fiber laser for sodium laser guide star[J]. Laser and Photonics Review, 2014, 8(6):889-895.
[44] Yang X Z, Zhang L, Cui S Z, et al. Sodium guide star laser pulsed at Larmor frequency[J]. Optics Letters, 2017, 42(21):4351-4354.