Spescial Issues

Research progress of sodium guide star laser for adaptive optics

  • XIE Shiyong ,
  • HUANG Kangsheng ,
  • SUN Yong ,
  • WANG Jiuwang ,
  • WANG Caili ,
  • BO Tiezhu ,
  • CAI Hua ,
  • XU Tao ,
  • LIAN Jiao ,
  • SONG Puguang
Expand
  • China Building Materials Academy, Beijing 100024, China

Received date: 2017-07-11

  Revised date: 2018-01-11

  Online published: 2018-03-28

Abstract

Adaptive optics technology plays an increasingly important role in the development of large ground-based optical astronomical telescopes, whereas the 589 nm sodium guiding star laser (SGSL) is the key to this technology. According to different generation ways, this paper reviews dye SGSL, all solid state SGSL and optical fiber SGSL, with emphases on analysis and comparison of all solid state SGSLs operating in different modes in terms of laser generation and photon-return efficiency of laser guide star. Compared with continuous wave SGSL, SGSL operating in microsecond pulse mode can use time gating mechanism to improve the imaging accuracy of sodium guide star, which provides an excellent beacon for adaptive optics correction.

Cite this article

XIE Shiyong , HUANG Kangsheng , SUN Yong , WANG Jiuwang , WANG Caili , BO Tiezhu , CAI Hua , XU Tao , LIAN Jiao , SONG Puguang . Research progress of sodium guide star laser for adaptive optics[J]. Science & Technology Review, 2018 , 36(5) : 60 -69 . DOI: 10.3981/j.issn.1000-7857.2018.05.007

References

[1] NASA's James Webb Space Telescope to be Launched Spring 2019[EB/OL].[2017-09-29]. https://www.nasa.gov/feature/nasas-james-webb-space-telescope-to-be-launched-spring-2019.
[2] Joyce R, Boyer C, Daggert L, et al. The laser guide star facility for the thirty meter telescope[J]. Proceedings of SPIE, 2006, 6272:1H1.
[3] China TMT. 中国参与国际巨型光学三十米望远镜(CTMT)情况简介[EB/OL].[2017-09-29]. http://ctmt.bao.ac.cn.ChinaTMT. Introduction of China's participation in the international giant optical CTMT[EB/OL].[2017-09-29]. http://ctmt.bao.ac.cn
[4] 周仁忠. 自适应光学[M]. 北京:国防工业出版社, 1996. Zhou Renzhong. Adaptive optics[M]. Beijing:National Defense Industry Press, 1996.
[5] Fugate R Q, Fried D L, Ameer G A, et al. Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star[J]. Nature, 1991(6340), 353:144-146.
[6] Kupke R, Gavel D T, Rockosi C M, et al. Shane AO:An enhanced adaptive optics and infrared imaging system for the Lick Observatory 3-meter Telescope[J]. Proceedings of SPIE, 2012, 8447:125.
[7] Otarola A, Hickson P, Gagne R, et al. On-sky tests of a highpower pulsed laser for sodium laser guide star adaptive optics[J]. Journal of Astronomical Instrumentation, 2016, 5(1):1650001.
[8] Thompson L A, Gardner C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy[J]. Nature, 1987, 328(6127):229-231.
[9] Jelonek M P, Fugate R Q, Cleis R A, et al. Characterization of artificial guide stars generated in the mesospheric sodium layer with a sum-frequency laser[J]. Journal of the Optical Society of America B, 1994, 11(2):806.
[10] Xie S Y, Bo Y, Xu J L, et al. A 7.5 W quasi-continuouswave sodium D2 laser generated from single-pass sum-frequency generation in LBO crystal[J]. Applied Physics B, 2011, 102(4):781-787.
[11] Kenneth A, James B, James M. Sodium laser guide star system at Lawrence Livermore National Laboratory:System description and experimental results[J]. Proceedings of SPIE, 1994, 2201:326-341.
[12] Max C E, Gavel D T, Olivier S S, et al. Issues in the design and optimization of adaptive optics and laser guide stars for the Keck telescopes[J]. Proceedings of SPIE, 1994, 2201:189-200.
[13] Quirrenbach A, Hackenberg W K P, Holstenberg H C, et al. Sodium laser guide star system of ALFA[J] Proceedings of SPIE, 1997, 3126:35-43.
[14] Jeys T H, Brailove A A. Mooradian Aram. Sum frequency generation of sodium resonance radiation[J]. Applied Optics, 1989, 28(13):2588-2591.
[15] Lu Y F, Bo Y, Xie S Y, et al. An 8.1 W diode pumped solidstate quasi-continuous-wave yellow laser at 589 nm by intracavity sum-frequency mixing generation[J]. Optics Communications, 2008, 281(22):5596-5600.
[16] Lu Y F, Xie S Y, Bo Y, et al. Generation of tunable and narrow linewidth continuous-wave yellow laser by sum-frequency mixing of diode-pumped solid-state Nd:YAG ring lasers[J]. Optics Communications, 2009, 282(17):3573-3576.
[17] Fugate R Q, Denman C A, Hillman P D, et al. Progress toward a 50-watt facility-class sodium guidestar pump laser[J]. Proceedings of SPIE, 2004, 5490:1010-1020.
[18] 鲁远甫. 高功率高光束质量全固态黄光激光技术研究[D]. 北京:中国科学院物理研究所, 2009. Lu Yuanfu. Research on the technology of all solid state yellow laser with high power and high beam quality[D]. Beijing:Institute of Physics, Chinese Academy of Sciences, 2009.
[19] Hayano Y, Saito Y, Ito M, et al. The laser guide star facility for Subaru Telescope[J]. Proceedings of SPIE, 2006, 6272:627247.
[20] Saitoa Y, Hayano Y, Saito N, et al. 589 nm sum-frequency generation laser for the LGS/AO of Subaru Telescope[J]. Proceedings of SPIE, 2006, 6272:627246.
[21] Tracy A J, Hankla A K, Lopez C A, et al. High-power solidstate sodium beacon laser guide star for the Gemini North Observatory[J]. Proceedings of SPIE, 2006, 6100:61001H.
[22] Hankla A K, Bartholomew J, Groff K, et al. 20 W and 50 W solid-state sodium beacon guidestar laser systems for the Keck I and Gemini South Telescopes[J]. Proceedings of SPIE, 2006, 61:62721G.
[23] Lee I, Jalali M, Vanasse N, et al. 20 W and 50 W guidestar laser system update for the Keck I and Gemini South telescopes[J]. Proceedings of SPIE, 2008, 7015:70150N.
[24] Sawruk N, Lee I, Jalali M, et al. System overview of 30 W and 55 W sodium guide star laser systems[J]. Proceedings of SPIE, 2010, 7736:77361Y.
[25] 刘杰, 王建立, 吕天宇, 等. 全固态589 nm激光器及其钠导星激发亮度[J]. 光学精密工程, 2014, 22(12):3199-3204. Liu Jie, Wang Jianli, Lv Tianyu, et al. All-solid-state 589 nm laser and the brightness of excited sodium guide star[J]. Optics and Precision Engineering, 2014, 22(12):3199-3204.
[26] 刘杰, 王建立, 王禹凝, 等. 自适应光学技术在钠激光导星发射光路中的应用初步实验研究[C]//长沙:第三届大气光学及自适应光学技术发展研讨会会议论文, 2017. Liu Jie, Wang Jianli, Wang Yuning, et al. Fundamental experimental research on application of adaptive optics in sodium laser guide star launch telescope[C]//Changsha:The Third Symposium on the Technical Development of Atmospheric Optics and Adaptive Optics, 2017.
[27] Moosmuller H, Vance J D. Sum-frequency generation of continuous-wave sodium D2 resonance radiation[J]. Optics Letters, 1997, 22(15):1135.
[28] Vance J D, She C Y, Moosmüller H. Continuous-wave, all-solid-state, single-frequency 400 mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator[J]. Applied Optics, 1998, 37(21):4891-4896.
[29] Bienfang J C, Denman C A, Grime B W, et al. 20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers[J]. Optics Letters, 2003, 28(22):2219-2221.
[30] Denman C A, Hillman P D, et al. Realization of a 50-watt facility-class sodium guidestar pump laser[J]. Proceedings of SPIE, 2005, 5707:46.
[31] Kibblewhite E J, Shi F. Design and field tests of an 8-W sum-frequency laser for adaptive optics[J]. Proceedings of SPIE, 1998, 3353:300-309.
[32] Velur V, Kibblewhite E J, Dekany R G, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star test bed[J]. Proceedings of SPIE, 2004, 5490:1033-1040.
[33] Dekany R, Bouchez A, Britton M, et al. PALM-3000:Visible light AO on the 5.1-meter Telescope[J]. Proceedings of SPIE, 2006, 6272:62720G.
[34] Wang P Y, Xie S Y, Bo Y, et al. 33Wquasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO[J]. Chinese Physics B, 2014, 23(9):094208.
[35] Wei K, Bo Y, Xue X H, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[J] Proceedings of SPIE, 2012, 8447:84471R.
[36] Bian Q, Bo Y, Zuo J W, et al. High-power QCW microsecond-pulse solid-state sodium beacon laser with spiking suppression and D2b re-pumping[J]. Optics Letters, 2016, 41(8):1732-1735.
[37] Lu Y H, Fan G B, Ren H J, et al. High-average-power narrow-line-width sum frequency generation 589 nm laser[J] Proceedings of SPIE, 2015, 9650:965008.
[38] Taylor L R, Feng Y, Bonaccini C D. High power narrowband 589 nm frequency doubled fiber laser source[J]. Optics Express, 2009, 17(17):14687-14693.
[39] Feng Y, Taylor L R, Bonaccini C D. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star[J]. Optics Express, 2009, 17(21):19021-19026.
[40] Feng Y, Taylor L R, Bonaccini C D. 39 W narrow linewidth Raman fiber amplifier with frequency doubling to 26. 5 W at 589 nm[J]. San Jose:Frontiers in Optics 2009, PDAA4.
[41] Bonaccini C D, Feng Y, Hackenberg W, et al. Laser development for sodium laser guide stars at ESO[J]. The Messenger, 2010, 139:12-19.
[42] Taylor L R, Feng Yan, Bonaccini C D. 50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fiber amplifiers[J]. Optics Express, 2010, 18(8):8540-8555.
[43] Zhang L, Jiang H W, Cui S Z, et al. Versatile Raman fiber laser for sodium laser guide star[J]. Laser and Photonics Review, 2014, 8(6):889-895.
[44] Yang X Z, Zhang L, Cui S Z, et al. Sodium guide star laser pulsed at Larmor frequency[J]. Optics Letters, 2017, 42(21):4351-4354.
Outlines

/