Scientifc Comments

The universe on wheelchair: A brief introduction to Stephen Hawking's academic contributions and influences

  • CAI Ronggen ,
  • CAO Liming ,
  • YANG Tao
Expand
  • 1. CAS Key Laboratory of Theoretical Physics;Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;
    4. Department of Astronomy, Beijing Normal University, Beijing 100875, China

Received date: 2018-03-20

  Revised date: 2018-04-04

  Online published: 2018-04-27

Abstract

In this article we give a brief introduction of Stephen Hawking's main academic contributions and their influences on related subjects. First, we introduce Hawking's accomplishments in his academic jobs such as classic gravity, black hole thermodynamics and quantum cosmology. Then we introduce his academic influences on other related subjects such as the holographic principle of gravity and the gravitational wave physics.

Cite this article

CAI Ronggen , CAO Liming , YANG Tao . The universe on wheelchair: A brief introduction to Stephen Hawking's academic contributions and influences[J]. Science & Technology Review, 2018 , 36(7) : 14 -19 . DOI: 10.3981/j.issn.1000-7857.2018.07.002

References

[1] Hawking S W. Properties of expanding universes[D]. Cambridge:Cambridge University, 1966.
[2] Bondi H, van der Burg M G J, Metzner A K W. Gravitational waves in general relativity, VⅡ. Waves from axisymmetric isolated systems[J]. Proceedings of the Royal Society A, 1962, 269:21-52.
[3] Oppenheimer J R, Snyder H. On continued gravitational contraction[J]. Physical Review, 1939, 56:455-459.
[4] Penrose R. Gravitational collapse and space-time singularities[J]. Physical Review Letters, 1965, 14:57-59.
[5] Hawking S W, Penrose R. The Singularities of gravitational collapse and cosmology[J]. Proceedings of the Royal Society A, 1970, 314:529-548.
[6] Ruffini R. Wheeler J A. Introducing the black hole[J]. Physics Today, 1971, 24(1):30.
[7] Israel W. Events horizons in static vacuum space-times[J]. Physical Review D, 1967, 164:1776-1779.
[8] Israel W. Event horizons in static electrovac space-times[J]. Communications in Mathematical Physics, 1968, 8:245-260.
[9] Carter B. Axisymmetric black hole has only two degrees of freedom[J]. Physical Review Letters, 1971, 26:331-333.
[10] Hawking S W. Black holes in general relativity[J]. Communications in Mathematical Physics, 1972, 25:152-166.
[11] Robinson D C. Uniqueness of the Kerr black hole[J]. Physical Review Letters, 1975, 34:905-906.
[12] Mazur P O. Proof of uniqueness of the Kerr-Newman black hole solution[J]. Journal of Physics A, 1982, 15:3173-3180.
[13] Bunting G. Proof of the uniqueness conjecture for black holes[D]. Armidale:University of New England, 1983.
[14] Bardeen J M, Carter B, Hawking S W. The four laws of black hole mechanics[J]. Communications in Mathematical Physics, 1973, 31:161-170.
[15] LIGO Scientific and Virgo Collaborations. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6):061102.
[16] Hawking S W. Gravitational radiation from colliding black holes[J]. Physical Review Letters, 1971, 26:1344-1346.
[17] Hawking S W, Ellis G F R. The large scale structure of space-time[M]. Cambridge:Cambridge University Press, 1973.
[18] Bekenstein J D. Black holes and entropy[J]. Physical Review D, 1973, 7:2333-2346.
[19] Hawking S W. Black hole explosions[J]. Nature, 1974, 248:30-31.
[20] Hawking S W. Particle creation by black holes[J]. Communications in Mathematical Physics, 1975, 43:199-220.
[21] Gibbons G W, Hawking S W. Action integrals and partition functions in quantum gravity[J]. Physical Review D, 1976, 15:2752-2756.
[22] Gibbons G W, Hawking S W. Euclidean quantum gravity[M]. Singapore:World Scientific, 1993.
[23] Hawking S W, Page D N. Thermodynamics of black holes in anti-De Sitter space[J]. Communications in Mathematical Physics, 1983, 87:577.
[24] 蔡荣根, 曹利明. 黑洞的本质[J]. 科学通报, 2016, 61(19):2083-2092. Cai Ronggen, Cao Liming. The nature of black holes[J]. Chinese Science Bulletin, 2016, 61(19):2083-2092.
[25] Page D N. Particle emission rates from a black hole:Massless particles from an uncharged, nonrotating hole[J]. Physical Review D, 1976, 13:198-206.
[26] Page D N. Particle emission rates from a black hole. 2. Massless particles from a rotating hole[J]. Physical Review D, 1976, 14:3260-3273.
[27] Page D N. Particle emission rates from a black hole. 3. Charged leptons from a nonrotating hole[J]. Physical Review D, 1977, 16:2402-2411.
[28] Hawking S W, Perry M J, Strominger A. Soft hair on black holes[J]. Physical Review Letters, 2016, 116(23):231301.
[29] Hartle J B, Hawking S W. Wave function of the universe[J]. Physical Review D, 1983, 28:2960-2975.
[30] Halliwell J J, Hawking S W. The origin of structure in the universe[J]. Physical Review D, 1985, 31:1777.
[31] Carr B J, Hawking S W. Black holes in the early Universe[J]. Monthly Notices of the Royal Astronomical Society, 1974, 168:399-415.
[32] Hawking S W. Wormholes in space-time[J]. Physical Review D, 1988, 37:904-910.
[33] Gibbons G W, Hawking S W, Horowitz G T, et al. Positive mass theorems for black holes[J]. Communications in Mathematical Physics, 1983, 88(3):295-308.
[34] Hawking S W, Hunter C J, Taylor M. Rotation and the AdS/CFT correspondence[J]. Physical Review D, 1999, 59:064005.
[35] Chamblin A, Hawking S W, Reall H S. Brane world black holes[J]. Physical Review D, 2000, 61:065007.
[36] Stephens C R,'t Hooft G, Whiting B F. Black hole evaporation without information loss[J]. Classical and Quantum Gravity, 1994, 11(3):621.
[37] Susskind L. The world as a hologram[J]. Journal of Mathematical Physics, 1995, 36(11):6377-6396.
[38] Maldacena J M. The Large N limit of superconformal field theories and supergravity[J]. Advances in Theoretical and Mathematical Physics, 1998, 2:231-252.
[39] Witten E. Anti-de Sitter space and holography[J]. Advances in Theoretical and Mathematical Physics, 1998, 2:253-291.
[40] LIGO Scientific and Virgo Collaborations. GW151226:Observation of gravitational waves from a 22-solar-mass binary black hole coalescence[J]. Physical Review Letter, 2016, 116(24):241103.
[41] LIGO Scientific and Virgo Collaborations. GW170104:Observation of a 50-Solar-mass binary black hole coalescence at redshift 0.2[J]. Physical Review Letter, 2017, 118(22):221101.
[42] LIGO Scientific and Virgo Collaborations. GW170814:A three-detector observation of gravitational waves from a binary black hole coalescence[J]. Physical Review Letter, 2017, 119(14):141101.
[43] LIGO scientific and Virgo collaborations. GW170817:Observation of gravitational waves from a binary neutron star inspiral[J]. Physical Review Letter, 2017, 119(16):161101.
[44] Hawking S W, Israel W. General relativity:An Einstein centenary survey[M]. Cambridge:Cambridge University Press, 1979:98.
[45] 蔡荣根, 曹周键, 韩文标. 并和双星系统的引力波理论模型[J]. 科学通报, 2016, 61(14):1525-1535. Cai Ronggen, Cao Zhoujian, Han Wenbiao. The gravitational wave models for binary compact objects[J]. Chinese Science Bulletin, 2016, 61(14):1525-1535.
Outlines

/