[1] Zhou L, Wang P, Zhang J, et al. ING2(inhibitor of growth protein-2) plays a crucial role in preimplantation development[J]. Zygote, 2016, 24(1):89-97.
[2] Oda H, Okamoto I, Murphy N, et al. Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development[J]. Molecular and Cellular Biology, 2009, 29(8):2278-2295.
[3] Zhang K, Haversat J M,Mager J. CTR9/PAF1c regulates molecular lineage identity, histone H3K36 trimethylation and genomic imprinting during preimplantation development[J]. Developmental Biology, 2013, 383(1):15-27.
[4] Fukuda A, Tomikawa J, Miura T, et al. The role of maternalspecific H3K9me3 modification in establishing imprinted Xchromosome inactivation and embryogenesis in mice[J]. Nature Communications, 2014(5):5464.
[5] Dahl J A, Jung I, Aanes H, et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition[J]. Nature, 2016, 537(7621):548-552.
[6] Flyamer I M, Gassler J, Imakaev M, et al. Single-nucleus HiC reveals unique chromatin reorganization at oocyte-to-zygote transition[J]. Nature, 2017, 544(7648):110-114.
[7] Guo H, Zhu P, Wu X, et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing[J]. Genome Research, 2013, 23(12):2126-2135.
[8] Liu X, Wang C, Liu W, et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos[J]. Nature, 2016, 537(7621):558-562.
[9] Lu F, Liu Y, Inoue A, et al. Establishing chromatin regulatory landscape during mouse preimplantation development[J]. Cell, 2016, 165(6):1375-1388.
[10] Wu J, Huang B, Chen H, et al. The landscape of accessible chromatin in mammalian preimplantation embryos[J]. Nature, 2016, 534(7609):652-657.
[11] Xue Z, Huang K, Cai C, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing[J]. Nature, 2013, 500(7464):593-597.
[12] Zhang B, Zheng H, Huang B, et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development[J]. Nature, 2016, 537(7621):553-557.
[13] Zheng H, Huang B, Zhang B, et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals[J]. Molecular Cell, 2016, 63(6):1066-1079.
[14] Wasylyk B, Chambon P. Transcription by eukaryotic RNA polymerases A and B of chromatin assembled in vitro[J]. European Journal of Biochemistry. 1979, 98(2):317-327.
[15] Kebede A F, Schneider R, Daujat S. Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest[J]. FEBS Journal, 2015, 282(9):1658-1674.
[16] Tropberger P, Pott S, Keller C, et al. Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer[J]. Cell, 2013, 152(4):859-872.
[17] Belotserkovskaya R, Oh S, Bondarenko V A, et al. FACT facilitates transcription-dependent nucleosome alteration[J]. Science, 2003, 301(5636):1090-1093.
[18] Brind'Amour J, Sheng L, Hudson M, et al. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations[J]. Nature Communications, 2015(6):6033.
[19] Ng J H, Kumar V, Muratani M, et al. In vivo epigenomic profiling of germ cells reveals germ cell molecular signatures[J]. Developmental Cell, 2013, 24(3):324-333.
[20] Lesch B J, Dokshin G A, Young R A, et al. A set of genes critical to development is epigenetically poised in mouse germ cells from fetal stages through completion of meiosis[J]. PNAS, 2013, 110(40):16061-16066.
[21] Sachs M, Onodera C, Blaschke K, et al. Bivalent chromatin marks developmental regulatory genes in the mouse embryonic germline in vivo[J]. Cell Reports, 2013, 3(6):1777-1784.
[22] Stewart K R, Veselovska L, Kim J, et al. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes[J]. Genes & Development, 2015, 29(23):2449-2462.
[23] Shen J, Jiang D, Fu Y, et al. H3K4me3 epigenomic landscape derived from ChIP-Seq of 1000 mouse early embryonic cells[J]. Cell Research, 2015, 25(1):143-147.
[24] Brind'Amour J, Sheng L, Hudson M, et al. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations[J]. Nature Communications, 2015(6):6033.
[25] Voigt P, Tee W W, Reinberg D. A double take on bivalent promoters[J]. Genes & Development, 2013, 27(12):1318-1338.
[26] Huang J, Zhang H, Wang X, et al. Impairment of preimplantation porcine embryo development by histone demethylase KDM5B knockdown through disturbance of bivalent H3K4me3-H3K27me3 modifications[J]. Biology of Reproduction, 2015, 92(3):72.
[27] Pérez Lluch S, Blanco E, Tilgner H, et al. Absence of canonical marks of active chromatin in developmentally regulated genes[J]. Nature Genetics, 2015, 47(10):1158-1167.
[28] Simon J A, Kingston R E. Mechanisms of polycomb gene silencing:Knowns and unknowns[J]. Nature Reviews Molecular Cell Biology, 2009, 10(10):697-708.
[29] Schuettengruber B, Chourrout D, Vervoort M, et al. Genome regulation by polycomb and trithorax proteins[J]. Cell, 2007, 128(4):735-745.
[30] Vastenhouw N L, Schier A F. Schier Bivalent histone modifications in early embryogenesis[J]. Current Opinion in Cell Biology, 2012, 24(3):374-386.
[31] Dahl J A, Reiner A H, Klungland A, et al. Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos[J]. PLoS One, 2010, 5(2):e9150.
[32] Wang J, Zhang M Y, Kou Z, et al. The histone demethylase JMJD2C is stage-specifically expressed in preimplantation mouse embryos and is required for embryonic development[J]. Biology of Reproduction, 2010, 82(1):105-111.
[33] Takahashi T, Nishigai M, Ikai A, et al. Electron microscopic and biochemical evidence that proline-β-naphthylamidase is composed of three identical subunits[J]. FEBS Letters, 1991, 280(2):297-300.
[34] Liu S, Brind'Amour J, Karimi M M, et al. Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells[J]. Genes & Development, 2014, 28(18):2041-2055.
[35] Inoue A, Lan J, Lu F, et al. Maternal H3K27me3 controls DNA methylation-independent imprinting[J]. Nature, 2017, 547(7664):419-424.
[36] Lee T I, Jenner R G, Boyer L A, et al. Control of developmental regulators by Polycomb in human embryonic stem cells[J]. Cell, 2006, 125(2):301-313.
[37] Boyer L A, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells[J]. Nature, 2006, 441(7091):349-353.
[38] Vastenhouw N L, Zhang Y, Woods I G, et al. Chromatin signature of embryonic pluripotency is established during genome activation[J]. Nature, 2010, 464(7290):922-926.
[39] Rugg Gunn P J, Cox B J, Ralston A, et al. Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo[J]. PNAS, 2010, 107(24):10783-10790.
[40] Akkers R C, Heeringen S J V, Jacobi U G, et al. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos[J]. Developmental Cell, 2009, 17(3):425-434.
[41] Schneider T D, Arteagasalas J M, Mentele E, et al. Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome[J]. PLoS One, 2011, 6(7):e22548.
[42] Schuettengruber B, Ganapathi M, Leblanc B, et al. Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos[J]. PLoS Biology, 2009, 7(1):e13.