Articles

Fabrication and patterning of graphene oxide ink with direct ink writing

  • MA Ying ,
  • LIU Lu ,
  • AN Boxing ,
  • LI Fengyu ,
  • DING Dan ,
  • LIU Ruping ,
  • SONG Yanlin
Expand
  • 1. School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
    2. Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    3. Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China

Received date: 2017-11-02

  Revised date: 2018-02-23

  Online published: 2018-04-27

Abstract

Giant graphene oxide (GGO) with radial size distribution of 30~70 μm is fabricated using the modified Hummers method, and graphene oxide ink is prepared. Through direct ink writing, the optimal printing parameters and patterning of graphene oxide ink are realized. When graphene oxide with a concentration of 15 mg/mL is printed at 70 kPa and 3 mm/s, the printing line is smooth and its morphology is fine and controllable. When the printing line is reduced by 15% hydroiodic acid for 3 h, its reduction degree is the highest and has the best electrical performance, with a conductivity up to 4.40×104 S/m, which is much higher than that of the graphene patterned by the existing printing technology. Patterning of graphene oxide ink on various flexible and non-flexible substrates, such as PET, PDMS, glass and silicon wafers is alao successfully achieved. Reduced graphene oxide pattern can be used as a connecting conductor to realize the integration of LED, which is of great significance for the development of graphene based printed electronic devices.

Cite this article

MA Ying , LIU Lu , AN Boxing , LI Fengyu , DING Dan , LIU Ruping , SONG Yanlin . Fabrication and patterning of graphene oxide ink with direct ink writing[J]. Science & Technology Review, 2018 , 36(7) : 88 -94 . DOI: 10.3981/j.issn.1000-7857.2018.07.013

References

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[2] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974):523-527.
[3] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.
[4] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
[5] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8):574-578.
[6] 刘双宇, 巩学海, 徐丽, 等. 介孔碳/石墨烯复合材料的制备及在超级电容器中的应用[J]. 硅酸盐学报, 2017, 45(2):312-316. Liu Shuangyu, Gong Xuehai, Xu Li, et al. Mesoporous carbon/graphene composite material and its application as supercapacitor[J]. Journal of the Chinese Ceramic Society, 2017, 45(2):312-316.
[7] 尚钰东, 陈秀华, 李绍元, 等. 石墨烯/n-Si肖特基结太阳能电池的性能限制因素及效率提升方法[J]. 材料导报, 2017, 31(3):123-129. Shang Yudong, Chen Xiuhua, Li Shaoyuan, et al. Performance limiting factors and efficiency improvement methods of graphene/n-Si Schottky junction solar cell[J]. Materials Review, 2017, 31(3):123-129.
[8] Samad Y A, Li Y, Alhassan S M, et al. Novel graphene foam composite with adjustable sensitivity for sensor applications[J]. ACS Applied Materials & Interfaces, 2015, 7(17):9195-9202.
[9] 潘听, 吴佳旸, 徐真真, 等. 近红外波段硅基石墨烯电光调制器研究进展[J]. 科技导报, 2016, 34(16):116-120. Pan Ting, Wu Jiayang, Xu Zhenzhen, et al. Recent development in silicon-graphene integrated electro-opticmodulators[J]. Science & Technology Review, 2016, 34(16):116-120.
[10] 石晓东, 王伟, 金慧娇, 等. 石墨烯场效应晶体管的输运特性[J]. 科学通报, 2017, 62(14):1520-1526. Shi Xiaodong, Wang Wei, Jin Huijiao, et al. Transport properties of graphene field effect transistors[J]. Chinese Science Bulletin, 2017, 62(14):1520-1526.
[11] Reina A, Jia X, Ho J, et al. Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 2009, 9(8):3087-3087.
[12] 刘庆彬, 蔚翠, 何泽召, 等. 蓝宝石衬底上化学气相沉积法生长石墨烯[J]. 物理化学学报, 2016, 32(3):787-792. Liu Qingbin, Yu Cui, He Zezhao, et al. Epitaxial graphene on sapphire substrate by chemical vapor deposition[J]. Acta Physico-Chimica Sinica, 2016, 32(3):787-792.
[13] Park J B, Xiong W, Gao Y, et al. Fast growth of graphene patterns by laser direct writing[J]. Applied Physics Letters, 2011, 98(12):123109.
[14] Zhou Y, Loh K P. Making patterns on graphene[J]. Advanced Materials, 2010, 22(32):3615-3620.
[15] 季津海, 闻雪梅, 陈洋, 等. 还原氧化石墨烯/Au复合微电极阵列的制备及光电特性[J]. 高等学校化学学报, 2016, 37(10):1826-1832. Ji Jinhai, Wen Xuemei, Chen Yang, et al. Preparation of reduced-graphene-oxide/Au composite microelectrode array and its optical and electrical characteristics[J]. Chemical Journal of Chinese Universities, 2016, 37(10):1826-1832.
[16] Dimiev A, Kosynkin D V, Sinitskii A, et al. Layer-by-layer removal of graphene for device patterning[J]. Science, 2011, 331(6021):1168-1172.
[17] 徐盼举, 邢赟, 许为中, 等. 刚性基底表面图案化氧化石墨烯对细胞粘附行为调控[J]. 浙江理工大学学报(自然科学版), 2017, 37(6):778-784. Xu Panju, Xing Yun, Xu Weizhong, et al. Regulation of cell adhesion by surface patterning graphene oxide on rigid substrates[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2017, 37(6):778-784.
[18] Zhou Y, Bao Q, Varghese B, et al. Microstructuring of graphene oxide nanosheets using direct laser writing[J]. Advanced Materials, 2010, 22(1):67-71.
[19] 李文博, 王旭东, 宋延林. 石墨烯基墨水的制备及其在印刷电子中的应用[J]. 科技导报, 2017, 35(17):30-36. Li Wenbo, Wang Xudong, Song Yanlin. Preparation of graphene-based inks and their applications to printed electronics:A review[J]. Science & Technology Review, 2017, 35(17):30-36.
[20] Wu Z S, Liu Z, Parvez K, et al. Ultrathin printable graphene supercapacitors with AC line-filtering performance[J]. Advanced Materials, 2015, 27(24):3669-3675.
[21] Arapov K, Rubingh E, Abbel R, et al. Conductive screen printing inks by gelation of graphene dispersions[J]. Advanced Functional Materials, 2016, 26(4):586-593.
[22] 刘璇, 王鹏波, 李必奎, 等. 皮秒激光直写还原石墨烯氧化物薄膜的研究[J]. 光电子激光, 2017, 28(10):1096-1100. Liu Xuan, Wang Pengbo, Li Bikui, et al. Study on reduction of graphene oxide films using picosecond laser direct writing[J]. Journal of Optoelectronics·Laser, 2017, 28(10):1096-1100.
[23] Secor E B, Ahn B Y, Gao T Z, et al. Rapid and versatile photonic annealing of graphene inks for flexible printed electronics[J]. Advanced Materials, 2015, 27(42):6683-6688.
[24] Hyun W J, Secor E B, Hersam M C, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics[J]. Advanced Materials, 2015, 27(1):109-115.
[25] Secor E B, Lim S, Zhang H, et al. Gravure printing of graphene for large-area flexible electronics[J]. Advanced Materials, 2014, 26(26):4533-4538.
[26] Zhu C, Liu T, Qian F, et al. Supercapacitors based on threedimensional hierarchical graphene aerogels with periodic macropores[J]. Nano Letters, 2016, 16(6):3448-3456.
[27] Dietrich C P, Karl M, Ohmer J, et al. Molding photonic boxes into fluorescent emitters by direct laser writing[J]. Advanced Materials, 2017, 29(16):1605236.
[28] Shin Y S, Son J Y, Jo M H, et al. High-mobility graphene nanoribbons prepared using polystyrene dip-pen nanolithography[J]. Journal of the American Chemical Society, 2011, 133(15):5623-5625.
[29] Nguyen D T, Meyers C, Yee T D, et al. 3D-printed transparent glass[J]. Advanced Materials, 2017, 29(26):1701181.
[30] Highley C B, Rodell C B, Burdick J A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels[J]. Advanced Materials, 2015, 27(34):5075-5079.
[31] Siqueira G, Kokkinis D, Libanori R, et al. Cellulose nanocrystal inks for 3D printing of textured cellular architectures[J]. Advanced Functional Materials, 2017, 27(12):1604619.
[32] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339-1339.
[33] Chen C M, Huang J Q, Zhang Q, et al. Annealing a graphene oxide film to produce a free standing high conductive graphene film[J]. Carbon, 2012, 50(2):659-667.
[34] 王艳春, 曾效舒, 魏嘉麒, 等. 化学还原石墨烯薄膜的制备及结构表征[J]. 材料导报, 2016, 30(2):46-49. Wang Yanchun, Zeng Xiaoshu, Wei Jiaqi, et al. Preparation and structural characterization of chemically reduced graphene films[J]. Materials Review, 2016, 30(2):46-49.
[35] 侯梦雪, 陈志萍, 杨晓峰, 等. 还原氧化石墨烯基水系超级电容器组装工艺研究[J]. 应用化工, 2017, 46(12):2395-2399. Hou Mengxue,Chen Zhiping,Yang Xiaofeng, et al. Study on the assembly process of reduced graphene oxide based water system supercapacitor[J]. Applied Chemical Industry, 2017, 46(12):2395-2399.
[36] 李帅, 藺玉胜, 魏燕彦, 等. 紫外还原法制备石墨烯[J]. 青岛科技大学学报(自然科学版), 2016, 37(6):631-636. Li Shuai, Lin Yusheng, Wei Yanyan, et al. Preparation of grapheme by UV light irradiation[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2016, 37(6):631-636.
[37] Yuan W, Li B, Li L. A green synthetic approach to graphene nanosheets for hydrogen adsorption[J]. Applied Surface Science, 2011, 257(23):10183-10187.
[38] Fernández-Merino M J, Guardia L, Paredes J I, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions[J]. The Journal of Physical Chemistry C, 2010, 114(14):6426-6432.
[39] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
[40] Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene[J]. Nature Nanotechnology, 2009, 4(1):25-29.
[41] Paredes J I, Villar-Rodil S, Solís-Fernández P, et al. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide[J]. Langmuir, 2009, 25(10):5957-5968.
[42] Wang H, Robinson J T, Li X, et al. Solvothermal reduction of chemically exfoliated graphene sheets[J]. Journal of the American Chemical Society, 2009, 131(29):9910-9911.
[43] Li Z, Yao Y, Lin Z, et al. Ultrafast, dry microwave synthesis of graphene sheets[J]. Journal of Materials Chemistry, 2010, 20(23):4781-4783.
[44] Xu Y, Sheng K, Li C, et al. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide[J]. Journal of Materials Chemistry, 2011, 21(20):7376-7380.
Outlines

/