[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[2] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974):523-527.
[3] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.
[4] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
[5] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8):574-578.
[6] 刘双宇, 巩学海, 徐丽, 等. 介孔碳/石墨烯复合材料的制备及在超级电容器中的应用[J]. 硅酸盐学报, 2017, 45(2):312-316. Liu Shuangyu, Gong Xuehai, Xu Li, et al. Mesoporous carbon/graphene composite material and its application as supercapacitor[J]. Journal of the Chinese Ceramic Society, 2017, 45(2):312-316.
[7] 尚钰东, 陈秀华, 李绍元, 等. 石墨烯/n-Si肖特基结太阳能电池的性能限制因素及效率提升方法[J]. 材料导报, 2017, 31(3):123-129. Shang Yudong, Chen Xiuhua, Li Shaoyuan, et al. Performance limiting factors and efficiency improvement methods of graphene/n-Si Schottky junction solar cell[J]. Materials Review, 2017, 31(3):123-129.
[8] Samad Y A, Li Y, Alhassan S M, et al. Novel graphene foam composite with adjustable sensitivity for sensor applications[J]. ACS Applied Materials & Interfaces, 2015, 7(17):9195-9202.
[9] 潘听, 吴佳旸, 徐真真, 等. 近红外波段硅基石墨烯电光调制器研究进展[J]. 科技导报, 2016, 34(16):116-120. Pan Ting, Wu Jiayang, Xu Zhenzhen, et al. Recent development in silicon-graphene integrated electro-opticmodulators[J]. Science & Technology Review, 2016, 34(16):116-120.
[10] 石晓东, 王伟, 金慧娇, 等. 石墨烯场效应晶体管的输运特性[J]. 科学通报, 2017, 62(14):1520-1526. Shi Xiaodong, Wang Wei, Jin Huijiao, et al. Transport properties of graphene field effect transistors[J]. Chinese Science Bulletin, 2017, 62(14):1520-1526.
[11] Reina A, Jia X, Ho J, et al. Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 2009, 9(8):3087-3087.
[12] 刘庆彬, 蔚翠, 何泽召, 等. 蓝宝石衬底上化学气相沉积法生长石墨烯[J]. 物理化学学报, 2016, 32(3):787-792. Liu Qingbin, Yu Cui, He Zezhao, et al. Epitaxial graphene on sapphire substrate by chemical vapor deposition[J]. Acta Physico-Chimica Sinica, 2016, 32(3):787-792.
[13] Park J B, Xiong W, Gao Y, et al. Fast growth of graphene patterns by laser direct writing[J]. Applied Physics Letters, 2011, 98(12):123109.
[14] Zhou Y, Loh K P. Making patterns on graphene[J]. Advanced Materials, 2010, 22(32):3615-3620.
[15] 季津海, 闻雪梅, 陈洋, 等. 还原氧化石墨烯/Au复合微电极阵列的制备及光电特性[J]. 高等学校化学学报, 2016, 37(10):1826-1832. Ji Jinhai, Wen Xuemei, Chen Yang, et al. Preparation of reduced-graphene-oxide/Au composite microelectrode array and its optical and electrical characteristics[J]. Chemical Journal of Chinese Universities, 2016, 37(10):1826-1832.
[16] Dimiev A, Kosynkin D V, Sinitskii A, et al. Layer-by-layer removal of graphene for device patterning[J]. Science, 2011, 331(6021):1168-1172.
[17] 徐盼举, 邢赟, 许为中, 等. 刚性基底表面图案化氧化石墨烯对细胞粘附行为调控[J]. 浙江理工大学学报(自然科学版), 2017, 37(6):778-784. Xu Panju, Xing Yun, Xu Weizhong, et al. Regulation of cell adhesion by surface patterning graphene oxide on rigid substrates[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2017, 37(6):778-784.
[18] Zhou Y, Bao Q, Varghese B, et al. Microstructuring of graphene oxide nanosheets using direct laser writing[J]. Advanced Materials, 2010, 22(1):67-71.
[19] 李文博, 王旭东, 宋延林. 石墨烯基墨水的制备及其在印刷电子中的应用[J]. 科技导报, 2017, 35(17):30-36. Li Wenbo, Wang Xudong, Song Yanlin. Preparation of graphene-based inks and their applications to printed electronics:A review[J]. Science & Technology Review, 2017, 35(17):30-36.
[20] Wu Z S, Liu Z, Parvez K, et al. Ultrathin printable graphene supercapacitors with AC line-filtering performance[J]. Advanced Materials, 2015, 27(24):3669-3675.
[21] Arapov K, Rubingh E, Abbel R, et al. Conductive screen printing inks by gelation of graphene dispersions[J]. Advanced Functional Materials, 2016, 26(4):586-593.
[22] 刘璇, 王鹏波, 李必奎, 等. 皮秒激光直写还原石墨烯氧化物薄膜的研究[J]. 光电子激光, 2017, 28(10):1096-1100. Liu Xuan, Wang Pengbo, Li Bikui, et al. Study on reduction of graphene oxide films using picosecond laser direct writing[J]. Journal of Optoelectronics·Laser, 2017, 28(10):1096-1100.
[23] Secor E B, Ahn B Y, Gao T Z, et al. Rapid and versatile photonic annealing of graphene inks for flexible printed electronics[J]. Advanced Materials, 2015, 27(42):6683-6688.
[24] Hyun W J, Secor E B, Hersam M C, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics[J]. Advanced Materials, 2015, 27(1):109-115.
[25] Secor E B, Lim S, Zhang H, et al. Gravure printing of graphene for large-area flexible electronics[J]. Advanced Materials, 2014, 26(26):4533-4538.
[26] Zhu C, Liu T, Qian F, et al. Supercapacitors based on threedimensional hierarchical graphene aerogels with periodic macropores[J]. Nano Letters, 2016, 16(6):3448-3456.
[27] Dietrich C P, Karl M, Ohmer J, et al. Molding photonic boxes into fluorescent emitters by direct laser writing[J]. Advanced Materials, 2017, 29(16):1605236.
[28] Shin Y S, Son J Y, Jo M H, et al. High-mobility graphene nanoribbons prepared using polystyrene dip-pen nanolithography[J]. Journal of the American Chemical Society, 2011, 133(15):5623-5625.
[29] Nguyen D T, Meyers C, Yee T D, et al. 3D-printed transparent glass[J]. Advanced Materials, 2017, 29(26):1701181.
[30] Highley C B, Rodell C B, Burdick J A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels[J]. Advanced Materials, 2015, 27(34):5075-5079.
[31] Siqueira G, Kokkinis D, Libanori R, et al. Cellulose nanocrystal inks for 3D printing of textured cellular architectures[J]. Advanced Functional Materials, 2017, 27(12):1604619.
[32] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339-1339.
[33] Chen C M, Huang J Q, Zhang Q, et al. Annealing a graphene oxide film to produce a free standing high conductive graphene film[J]. Carbon, 2012, 50(2):659-667.
[34] 王艳春, 曾效舒, 魏嘉麒, 等. 化学还原石墨烯薄膜的制备及结构表征[J]. 材料导报, 2016, 30(2):46-49. Wang Yanchun, Zeng Xiaoshu, Wei Jiaqi, et al. Preparation and structural characterization of chemically reduced graphene films[J]. Materials Review, 2016, 30(2):46-49.
[35] 侯梦雪, 陈志萍, 杨晓峰, 等. 还原氧化石墨烯基水系超级电容器组装工艺研究[J]. 应用化工, 2017, 46(12):2395-2399. Hou Mengxue,Chen Zhiping,Yang Xiaofeng, et al. Study on the assembly process of reduced graphene oxide based water system supercapacitor[J]. Applied Chemical Industry, 2017, 46(12):2395-2399.
[36] 李帅, 藺玉胜, 魏燕彦, 等. 紫外还原法制备石墨烯[J]. 青岛科技大学学报(自然科学版), 2016, 37(6):631-636. Li Shuai, Lin Yusheng, Wei Yanyan, et al. Preparation of grapheme by UV light irradiation[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2016, 37(6):631-636.
[37] Yuan W, Li B, Li L. A green synthetic approach to graphene nanosheets for hydrogen adsorption[J]. Applied Surface Science, 2011, 257(23):10183-10187.
[38] Fernández-Merino M J, Guardia L, Paredes J I, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions[J]. The Journal of Physical Chemistry C, 2010, 114(14):6426-6432.
[39] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
[40] Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene[J]. Nature Nanotechnology, 2009, 4(1):25-29.
[41] Paredes J I, Villar-Rodil S, Solís-Fernández P, et al. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide[J]. Langmuir, 2009, 25(10):5957-5968.
[42] Wang H, Robinson J T, Li X, et al. Solvothermal reduction of chemically exfoliated graphene sheets[J]. Journal of the American Chemical Society, 2009, 131(29):9910-9911.
[43] Li Z, Yao Y, Lin Z, et al. Ultrafast, dry microwave synthesis of graphene sheets[J]. Journal of Materials Chemistry, 2010, 20(23):4781-4783.
[44] Xu Y, Sheng K, Li C, et al. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide[J]. Journal of Materials Chemistry, 2011, 21(20):7376-7380.