Spescial Issues

Complexity of beam-halo chaos, the control methods and applications

  • FANG Jinqing
Expand
  • Department of Nuclear Technology Applications, Institute of Atomic Energy Science, Beijing 102413, China

Received date: 2018-03-08

  Revised date: 2018-04-04

  Online published: 2018-04-27

Abstract

The beam transmission system in a particle accelerator is a complex network composed of many electromagnetic focusing units as nodes. The intense current particle beam in the beam transmission network system(BTN) can produce its own special halo chaos, as a unique flower in the complexity science garden. It is an extremely important subject of concern. The complexity, the physical mechanism, the control methods and the practical applications of this special beam-halo in the chaos kingdom are reviewed in this paper.

Cite this article

FANG Jinqing . Complexity of beam-halo chaos, the control methods and applications[J]. Science & Technology Review, 2018 , 36(8) : 8 -21 . DOI: 10.3981/j.issn.1000-7857.2018.08.001

References

[1] Reiser M, Lee E P. Theory and design of charged particle beams[J]. Physics Today, 1995, 48(6):59-59.
[2] Sessler A M. Collective phenomena in accelerators[C/OL].[2018-01-31]. http://lss.fnal.gov/conf/C721010/p291.pdf.
[3] 方锦清. 驾驭强流束晕与探索网络科学[M]. 北京:原子能出版社, 2008. Fang Jinqing. Harnessing high halo and explore network science[M]. Beijing:Atomic Energy Publishing House, 2008.
[4] 毕桥, 方锦清. 网络科学与统计物理方法[M]. 北京:北京大学出版社, 2011. Bi Qiao, Fang Jinqing. Network science and statistical physics methods[M]. Beijing:Peking University Press, 2011.
[5] 方锦清. 科技浪花与追梦随笔——新兴科学交叉集[M]. 北京:原子能出版社, 2015. Fang Jinqing. Science and technology flowers and dreams:A cross collection of emerging science[M]. Beijing:Atomic Energy Publishing House, 2015.
[6] Lee S Y. Space charge dominated beams and applications of high brightness beams[C]//AIP Conference Proceedings, No.377. New York:AIP Press, 1996.
[7] Jameson R A. Frontiers of accelerator technology[C]//Proceeding of Joint US-CERN-JapanInternational School in 1994. Singapore:World Scientific, 1996:430-560.
[8] Lagniel J M. Chaotic behaviour and halo formation from 2D space-charge dominated beams[J]. Nuclear Instruments & Methods in Physics Research, 1994, 345(3):405-410.
[9] 方锦清, 陈关荣. 非线性反馈控制强流加速器中的束晕-混沌现象[J]. 强激光与粒子束, 2000, 2(5):647-651. Fang Jinqing, Chen Guanrong. Nonlinear feedback control of beam halo-chaos in high current acceleratorIntense[J]. Laser and Particle Beam, 2000, 2(5):647-651.
[10] 方锦清, 赵耿, 周刘来, 等. 束晕-混沌的非线性反馈离散控制[J]. 强激光与粒子束, 2002, 14(6):933-937. Fang Jinqing, Zhao Geng, Zhou Liulai, et al. Nonlinear feedback discrete control of beam-halo_2 chaos[J]. Intense Laser and Particle Beam, 2002, 14(6):933-937.
[11] Gluckstern R L. Analytic model for halo formation in high current ion linacs[J]. Physical Review Letters, 1994, 73:9(9):1247-1250.
[12] Gluckstern R L, Fedotov A V, Kurennoy S, et al. Halo formation in three-dimensional bunches[J]. Physical Review E, 1998, 58(58):4977-4990.
[13] Fedotov A V, Gluckstern R L, Kurennoy S S, et al. Halo formation in three-dimensional bunches with various phase space distributions[J]. Review of Modern Physics, 1999, 2(1):014201.
[14] Allen C K, Chan K C, Colestock P L, et al. Beam-halo measurements in high-current proton beams[J]. Physical Review Letters, 2002, 89(21):214802-214804.
[15] Qiang J, Colestock P L, Gilpatrick D, et al. Macroparticle simulation studies of a proton beam halo experiment[J]. Physical Review Special Topics-Accelerators and Beams, 2002, 5(12):124201.
[16] Wangler T P, Crandall K R, Ryne R, et al. Particle-core model for transverse dynamics of beam halo[J]. Review of Modern Physics, 1999, 1(8):084201.
[17] Chen C, Davidson R C. Nonlinear resonances and chaotic behavior in a periodically focused intense charged-particle beam[J]. 1994, 72(14):2195-2198.
[18] Wangler T P, Crandall K R, Ryne R, et al. Particle-core model for transverse dynamics of beam halo[J]. Review of Modern Physics, 1999, 1(8):084201.
[19] Wang T S F. Particle-core study of halo dynamics in periodic-focusing channels[J]. Physical Review E:Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 2000, 61(1):855-861.
[20] Allen C K, Wangler T P. Beam halo definitions based upon moments of the particle distribution[J]. Review of Modern Physics, 2008, 5(12):441-451.
[21] 方锦清. 驾驭混沌与发展高新技术[M]. 北京:中国原子能出版社, 2002. Fang Jinqing. Control chaos and develop high and new technology[M]. Beijing:China Atomic Energy Publishing House, 2002.
[22] 方锦清, 陈关荣. 束晕-混沌的复杂性理论与控制方法及其应用前景[J]. 物理学进展, 2003, 23(3):321-388. Fang Jinqing, Chen Guanrong. Complexity theory and control method of beam halo-chaos and its application prospect[J]. Progress in Physics, 2003, 23(3):321-388.
[23] 刘强, 方锦清, 李永. 束流传输网络中多目标的分区耦合牵制控制[J].复杂系统与复杂性科学, 2007, 4(1):13-19. Liu Qiang, Fang Jinqing, Li Yong. The multi-objective coupled control of the partition in a beam transmission network[J]. Complex Systems and Complexity Science, 2007,4(1):13-19.
[24] 刘强, 方锦清, 李永. 具有小世界和无标度拓扑的束流传输网络中束晕-混沌的同步与控制[J]. 自然科学进展, 2007, 17(10):1418-1427. Liu Qiang, Fang Jinqing, Li Yong. beam halo in a beam transport network with small world and scale-free topology Synchronization and control of chaos[J]. Advances in Natural Science, 2007, 17(10):1418-1427.
[25] Liu Q, Fang J Q, Li Y. Synchronization and control of halochaos in beam transport network with small world topology[J]. Communications in Theoretical Physics, 2007, 47(4):752-758.
[26] 方锦清. 强流加速器驱动的洁净核能系统中的一个关键问题——束晕-混沌的物理机制及控制对策[J]. 自然杂志, 2000, 22(2):62-69. Fang Jinqing. A key problem in the clean nuclear power system driven by high current accelerator:The physical mechanism and control strategy of halo chaos[J]. Chinese Journal of Nature, 2000, 22(2):62-69.
[27] Gelès C, Lindecker G, Mandrillon P, et al. An energy amplifier for cleaner and inexhaustible nuclear energy production driven by a particle beam accelerator:Complement on cost analysis[C]//8th Journées Saturne:Accelerators Applied to the Nuclear Waste Problem. Saclay, France:CERN, 1993:CERN-AT-93-47-ET.
[28] 丁大钊. 放射性洁净核能系统[J]. 科技导报, 1997, 15(3):32-34. Ding Dazhao. Radioactive clean nuclear energy system[J]. Science and Technology Review, 1997, 15(3):32-34.
[29] 傅世年. 强流质子直线加速器低能端物理问题的研究[D]. 北京:中国原子能科学研究院, 1999. Fu Shiyear. A research on the low-energy end physics problem of a strong-flow proton linear accelerator[D]. Beijing:China Atomic Energy Science Research Institute, 1999.
[30] 丁大钊, 赵志祥."加速器驱动洁净核能系统的物理及技术基础研究"项目总结报告[R]. 北京:中国原子能科学研究院和中国科学院高能物理研究所, 2005. Ding Dazhao, Zhao Zhixiang. Summary report on physics and technology basic research of accelerator driven clean nuclear power system project[R]. Beijing:Institute of High Energy Physics, China Institute of Atomic Energy and Chinese Academy of Sciences, 2005.
[31] 方锦清. 特殊的束晕-混沌网络保密通信系统[C]//2016年全国混沌保密通信会议大会. 北京:中国密码学会, 2016. Fang Jinqing. Special beam halo-chaotic network secure communication system[C]//The National Conference on Chaotic Secure Communication in 2016. Beijing:Chinese Association for Cryptologic Research, 2018.
[32] 方锦清. 多特性结合的网络保密通信系统[C]//2017第13届中国网络科学论坛大会. 北京:中国工业与应用数学学会, 2017:4-22. Fang Jinqing. multi-characteristic network confidential communication system[C]//The 13th China Web Science Forum. Beijing:China Institute of industrial and Applied Mathematics, 2017:4-22.
[33] Fang J Q, Luo X S. Control of halo-chaos in beam transport network via neural network adaptation with time-delayed feedback[J]. Communications in Theoretical Physics, 2006, 45(1):117-120.
[34] 刘强, 方锦清, 赵耿, 等.束晕混沌同步控制及若干加密方法研究[J]. 复杂系统与复杂性科学, 2014, 11(1):23-40. Liu Qiang, Fang Wei, Zhao Geng, et al. Halo synchronization control and some encryption methods[J]. Complex Systems and Complexity Science, 2014, 11(1):23-40.
Outlines

/