The photocatalytic reaction with Bi2WO6 as a catalyst is found to be effective for removal of tetracycline in wastewater. In this paper, the treatment efficiency of Bi2WO6 photocatalyst for tetracycline wastewater is further improved through directly adding photosensitizer to the photocatalytic reaction. Bi2WO6 catalyst is prepared and characterized by XRD and SEM to explore its crystal structure and morphology. Meanwhile, the effects of five factors including anion, cation, photosensitizer dosage, initial concentration of tetracycline, and initial pH of tetracycline on the removal of tetracycline are studied. The results show that the photocatalyst is successfully prepared without any damage to the lattice structure, and that addition of sensitizer can improve adsorption and removal of tetracycline, and that the catalytic activity of Bi2WO6 is optimized. The promotion effects of anion Cl- and cationic Cu2+ are better than others, and after comparison the best photosensitizer is found to be copper sulfate. The removal rate of tetracycline can reach 88.79% when the addition of copper sulfate is 1.5 ml and the initial concentration of tetracycline is 70 mg/L. Besides, the adsorption efficiency is the best when pH is 5 or 8, the adsorption rates being 51.50% and 55.01%, respectively.
[1] 秦松岩, 李杭, 山丹, 等. 四环素类抗生素生产废水处理现状与研究进展[J]. 天津理工大学学报, 2016, 32(2):50-54. Qin Songyan, Li Hang, Shan Dan, et al. The present situation and research progress in the treatment of tetracycline antibiotic manufacturing wastewater[J]. Journal of Tianjin University of Technology, 2016, 32(2):50-54.
[2] 李伟明, 鲍艳宇, 周启星. 四环素类抗生素去除途径及其主要去除产物研究进展[J]. 应用生态学报, 2012, 23(8):2300-2308. Li Weiming, Bao Yanyu, Zhou Qixing. Degradation pathways and main degradation products of tetracycline antibiotics:Research progress[J]. Chinese Journal of Applied Ecology, 2012, 23(8):2300-2308.
[3] 解永磊. UASB-A/O-Fenton组合工艺处理四环素类抗生素废水试验研究[D]. 天津:天津理工大学, 2015. Xie Yonglei. Study on tetracycline antibiotics wastewater treatment by UASB-A/O-Fenton combined processes[D]. Tianjin:Tianjin University of Technology, 2015.
[4] 李青松, 高乃云, 马晓雁, 等. TiO2光催化去除水中内分泌干扰物17β-雌二醇[J]. 环境科学, 2007, 28(1):120-125. Li Qingsong, Gao Naiyun, Ma Xiaoyan, et al. Photocatalytic endocrine disruptor 17β-Estradiol(E2) in drinking water by nano titanium suspended system[J]. Environment Science, 2007, 28(1):120-125.
[5] Chen S H, Yin Z, Luo S L, et al. Photoreactive mesoporous carbon/Bi2WO6 composites:Synthesis and reactivity[J]. Applied Surface Science, 2012, 259:7-12.
[6] 唐玉朝, 胡春, 王怡中. TiO2光催化反应机理及动力学研究进展[J]. 化学进展, 2002, 14(3):192-199. Tang Yuchao, Hu Chun, Wang Yizhong. Recent advances in mechanisms and kinetics of TiO2 Photocatalysis[J]. Progress in Chemistry, 2002, 14(3):192-199.
[7] Yu H, Liu R, Wang X, et al. Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst[J]. Applied Catalysis B:Environmental, 2012, 111-112(6):326-333.
[8] Chen M, Chu W. H2O2 assisted degradation of antibiotic norfloxacin oversimulated solar light mediated Bi2WO6:Kinetics and reaction pathway[J]. Chemical Engineering Journal, 2016, 296:310-318.
[9] Ma D, Wu J, Gao M, et al. Fabrication of z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity[J]. Chemical Engineering Journal, 2016, 290:136-146.
[10] 程庆利. 对硝基苯胺的光化学去除研究[D]. 青岛:中国海洋大学, 2011. Cheng Qinli. Study on photochemical degradation of pnitroaniline[D]. Qingdao:Ocean University of China, 2011.
[11] Golzadnonakaran B, Habibiyangjeh A. Photosensitization of ZnO with Ag3VO4 and AgI nanoparticles:Novel ternary visible-light-driven photocatalysts with highly enhanced activity[J]. Advanced Powder Technology, 2016, 27(4):1427-1437.
[12] Pirhashemi M, Habibiyangjeh A. Photosensitization of ZnO by AgBr and Ag2CO3:Nanocomposites with tandem n-n heterojunctions and highly enhanced visible-light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2016, 474(475):103-113.
[13] 吴江, 王松, 蒋德山. 纳米TiO2光催化剂改性方法研究进展[J]. 当代化工, 2016, 45(8):1934-1936. Wu Jiang, Wang Song, Jiang Deshan. Research progress of modification methods of manometer titanium dioxide photocatalysts[J]. Contemporary Chemical Industry, 2016, 45(8):1934-1936.
[14] 刘莹, 李建志, 路成刚, 等. TiO2可见光催化活性的拓展及应用[J]. 科技导报, 2016, 34(18):104-109. Liu Ying, Li Jianzhi, Lu Chenggang, et al. Development and application of photocatalytic activity of TiO2[J]. Science & Technology Review, 2016, 34(18):104-109.
[15] 徐志兵, 李晨君, 卢伍阳, 等. 光敏化La2O3/TiO2催化剂的制备及其光催化性能研究[J]. 人工晶体学报, 2015, 44(2):542-545. Xu Zhibing, Li Chenjun, Lu Wuyang, et al. Study on preparation and photocatalytic properties of Photosensitizatized La2O3/TiO2 Photocatalyst[J]. Journal of Synthetic Crystals, 2015, 44(2):542-545.
[16] 杨传玺, 王炜亮, 等. 可见光响应PANI/TiO2和PoPD/TiO2纳米材料的氧化机制及协同-光敏化作用[J]. 环境化学, 2016, 35(1):102-111. Yang Chuanxi, Wang Weiliang, et al. Oxidation mechanism and synergetic-photosensitization effect of visible-light-induced PANI/TiO2 and PoPD/TiO2 nanocomposites[J].Environmental Chemistry, 2016, 35(1):102-111.
[17] Huang Y, Li S X, Fu B Y. Degradation kinetics of wastewater from papermaking on nanosized titanium dioxide surfacemodified with Methylene Blue[J]. Chinese Journal of Environmental Engineering, 2012(8):2544-2550.
[18] 张伟. TiO2光敏化研究进展[J]. 广东化工, 2009, 36(11):94-97. Zhang Wei. TiO2 photosensitization research progress[J]. Guangdong Chemical Industry, 2009, 36(11):94-97.
[19] 王成亮. TiO2纳米复合材料的制备与光催化性能研究[D]. 长春:吉林大学, 2016. Wang Chengliang. Preparation and photocatalytic property of TiO2 nanocomposites[D]. Changchun:Jilin University, 2016.
[20] 钟爽. Bi2WO6基可见光催化剂的制备及在连续流反应器中降解四环素废水的研究[D]. 长春:吉林大学, 2016. Zhong Shuang. Preparation of novel Bi2WO6 photocatalyst and degradation of tetracycline in continuous flow photocatalytic reactor[D]. Changchun:Jilin University, 2016.
[21] 黄毅, 吴季怀, 黄妙良, 等. 表面活性剂对水热制备钨酸铋形貌及光催化性能的影响[J]. 中国科学:化学, 2011, 41(1):44-50. Huang Yi, Wu Jihuai, Huang Miaoliang, et al. Effect of surfactants on the morphology and photocatalytic properties of bismuth tungstate prepared by hydrothermal method[J]. Science China:Chemistry, 2011, 41(1):44-50.
[22] 李喆钦. 基于磁性树脂吸附的水体中四环素的快速吸附去除技术研究[D]. 南京:南京大学, 2012. Li Zheqin. Rapid and efficient removal of tetracycline by magnetic resin from aquatic environments[D]. Nanjing:Nanjing University, 2012.
[23] 王侠. 链霉菌发酵液固液分离过程研究[D]. 石家庄:河北科技大学, 2011. Wang Xia. Study on the solid-liquid separation process of Streptomyces fermentation broth[D]. Shijiazhuang:Hebei University of Science and Technology, 2011.
[24] 张丽. MO/MAl2O4(M=Zn, Cu, Ni)复合氧化物的可控制备及其光催化性能研究[D]. 长沙:中南大学, 2013. Zhang Li. Controllable preparation and photocatalytic properTimes New Romanties of MO/MAl2O4(M=Zn, Cu, Ni) composite oxides[D]. Changsha:Central South University, 2013.
[25] 鹿伟. 差示分光光度法测定四环素条件的选择[J]. 山东化工, 2015, 44(17):74-79. Lu Wei. Differential spectrophotometry determination of tetracycline conditions in pharmaceutical preparations[J]. Shandong Chemical Industry, 2015, 44(17):74-79.
[26] Wang Y, Zhang H, Chen L. Ultrasound enhanced catalytic ozonation of tetracycline in a rectangular air-lift reactor[J]. Catalysis Today, 2011, 175(1):283-292.