[1] 孙九林. 农业信息工程的理论、方法和应用[J]. 中国工程科学, 2000, 2(3):87-91. Sun Jiulin. The theory, methodology and application of agricultural information engineering[J]. Engineering Science, 2000, 2(3):87-91.
[2] 赵春江. 我国数字农业技术发展战略与主要研究进展[C]//2004年中国作物学会学术年会. 武汉:中国作物学会, 2004:7-11. Zhao Chunjiang. Development and Advances of Digital Agriculture in China[C]//Annual Conference of Crop Science Society of China, Wuhan:The Cropscience Society of China, 2004:7-11.
[3] 李保国, 刘忠. 数字农业与农业信息化发展的现状与趋势[C]//2005年中国数字农业与农村信息化学术研究研讨会. 北京:中国农业出版社, 2005:14-18. Li Baoguo, Liu Zhong. Development and trends of digital agriculture and information[C]//Conference on Digital Agriculture and Rural Informatization in China. Beijing:China Agriculture Press, 2005:14-18.
[4] 曹宏鑫, 赵锁劳, 葛道阔, 等. 农业模型与数字农业发展探讨[J]. 江苏农业学报, 2012, 28(5):1181-1188. Cao Hongxin, Zhao Suolao, Ge Daokuo, et al. Discussion on development of agricultural models and digital agriculture[J]. Ji-angsu Journal of Agriculture Science, 2012, 28(5):1181-1188.
[5] 赵春江, 陆声链, 郭新宇, 等. 数字植物及其技术体系探讨[J]. 中国农业科学, 2009, 43(10):2023-2030. Zhao Chunjiang, Lu Shenglian, Guo Xinyu, et al. Exploration of digital plant and its technology system[J]. Scientia Agricultura Sinica, 2009, 43(10):2023-2030.
[6] 杨国才. 虚拟农业体系结构的研究[J]. 计算机科学, 2005, 32(3):125-126. Yang Guocai. Researeh on architecture of virtual agrieulture[J]. Computer Science, 2005, 32(3):125-126.
[7] 贾科利, 常庆瑞, 张俊华, 等. 信息农业现状与发展趋势[J]. 西北农林科技大学学报(社会科学版), 2003, 3(6):13-17. Jia Keli, Chang Qingrui, Zhang Junhua, et al. The developmental trend and status of information agriculture[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Social Science Edition), 2003, 3(6):13-17.
[8] 周国民. 数字农业综述[J]. 农业图书情报学刊, 2004, 15(3):5-6, 17. Zhou Guomin. Review on digital agriculture[J]. Journal of Library and Information Sciences in Agriculture, 2004, 15(3):5-6, 17.
[9] 张卫星, 朱德峰, 赵致, 等. 虚拟现实技术与虚拟农业[J]. 贵州农业科学, 2006, 34(2):115-118. Zhang Weixing, Zhu Defeng, Zhao Zhi, et al. A brief review of virtual reality technology and virtual agriculture[J]. Guizhou Agricultural Sciences, 2006, 34(2):115-118.
[10] 毛竞, 关欣, 李巧云. 我国数字农业发展现状与发展趋势[J]. 广东农业科学, 2007, 12:126-128. Mao Jing, Guan Xin, Li Qiaoyun. Development and trends of digital agriculture in China[J]. Guangdong Agriculture Acience, 2007, 12:126-128.
[11] 王一鸣. 数字农业与数字农业工程技术的现状与发展[J]. 农业工程学报, 2003, 19(增刊1):9-10. Wang Yiming. Situation and development of digital agriculture and digital agriculture engineering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(Suppl 1):9-10.
[12] 陈洪, 马钦, 朱德海. 基于unity3d的交互式虚拟农业仿真平台研究[J]. 农机化研究, 2012, 34(3):184-186. Chen Hong, Ma Qin, Zhu Dehai. Research of interactive virtual agriculture simulation platform based on unity3d[J]. Journal of Agricultural Mechanization Research, 2012, 34(3):184-186.
[13] 滕光辉, 周春林. 虚拟现实技术在温室中的应用[J]. 农业工程学报, 2003, 19(4):254-258. Teng Guanghui, Zhou Chunlin. Application of virtual reality technology in the greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(4):254-258.
[14] 赵春江, 陆声链, 郭新宇, 等. 数字植物研究进展:植物形态结构三维数字化[J]. 中国农业科学, 2015, 48(17):3415-3428. Zhao Chunjiang, Lu Shenglian, Guo Xinyu, et al. Advances in research of digital plant:3D digitization of plant morphological structure[J]. Scientia Agricultura Sinica, 2015, 48(17):3415-3428.
[15] 肖伯祥, 郭新宇, 陆声链, 等.植物三维形态虚拟仿真技术体系研究[J]. 应用基础与工程科学学报, 2012, 20(4):539-551. Xiao Boxiang, Guo Xinyu, Lu Shenglian, et al. Research in technological framework of 3D morphological virtual simulation of plant[J]. Journal of Basic Science and Engineering, 2012, 20(4):539-551.
[16] 赵沁平. 虚拟现实综述[J]. 中国科学(信息科学), 2009, 39(1):2-46. Zhao Qinping. A survey on virtual reality[J]. Science in China Series F(Information Sciences), 2009, 39(1):2-46.
[17] 赵沁平, 周彬, 李甲, 等. 虚拟现实技术研究进展[J]. 科技导报, 2016, 34(14):71-75. Zhao Qinping, Zhou Bin, Li Jia, et al. A brief survey on virtual reality technology[J]. Science & Technology Review, 2016, 34(14):71-75.
[18] 郭小虎, 秦洪. 适用于可变形体物理建模与模拟的无网格方法[J]. 中国科学(信息科学), 2009, 39(1):47-60. Guo Xiaohu, Qin Hong. Meshless methods for physics-based modeling and simulation of deformable models[J]. Science in China (Information Sciences), 2009, 39(1):47-60.
[19] Wang S F, Hou T B, Su Z X, et al. Multi-scale anisotropic heat diffusion based on normal-driven shape representation[J]. The Visual Computer, 2011, 27(6-8):429-439.
[20] Pan J J, Zhao C K, Zhao X, et al. Metaballs-based physical modeling and deformation of organs for virtual surgery[J]. The Visual Computer, 2015, 31(6-8):947-957.
[21] 谭捷, 杨旭波. 基于物理的流体动画综述[J]. 中国科学(信息科学), 2009, 39(5):499-514. Tan Jie, Yang Xubo. Physically-based fluid animation:A survey[J]. Science in China (Information Sciences), 2009, 39(5):499-514.
[22] 张凤军, 戴国忠, 彭晓兰.虚拟现实的人机交互综述[J].中国科学(信息科学), 2016, 46(12):1711-1736. Zhang Fengjun, Dai Zhongguo, Peng Xiaolan. Survey on human-computer interaction in virtual reality[J]. Science in China (Information Sciences), 2016, 46(12):1711-1736.
[23] 曹煊. 虚拟现实的技术瓶颈[J]. 科技导报, 2016, 34(15):94-103. Cao Xuan. Technological bottleneck of virtual reality[J]. Science & Technology Review, 2016, 34(15):94-103.
[24] Lindenmayer A. Mathematical models for cellular interaction in development, Parts I and Ⅱ[J]. Journal of Theoretical Biology, 1968, 18(3):280-315.
[25] Prusinkiewicz P. Modeling of spatial structure and development of plants:A review[J]. Scientia Horticulturae, 1998, 74(1-2):113-149.
[26] 李保国, 郭焱. 作物生长的模拟研究[J]. 科技导报, 1997, 15(7):11-12. Li Baoguo, Guo Yan. Simulated research on the plant growth[J]. Science & Technology Review, 1997, 15(7):11-12.
[27] 郭焱, 李保国. 虚拟植物的研究进展[J]. 科学通报, 2001, 46(4):273-280. Guo Yan, Li Baoguo. New advances in virtual plant research[J]. Science Bulletin, 2001, 46(4):273-280.
[28] 胡包钢, 赵星, 严红平, 等. 植物生长建模与可视化-回顾与展望[J]. 自动化学报, 2001, 27(6):816-835. Hu Baogang, Zhao Xing, Yan Hongping, et al. Plant growth modeling and visualization:Review and perspective[J]. Acta Automatica Sinica, 2001, 27(6):816-835.
[29] 侯加林, 王一鸣, 董乔雪, 等. 虚拟植物生长的研究现状与发展趋势[J]. 农业机械学报, 2004, 35(3):159-163. Hou Jialin, Wang Yiming, Dong Qiaoxue, et al. Research and development of virtual plant technique[J]. Transactions of The Chinese Society of Agricultural Machinery, 2004, 35(3):159-163.
[30] 戴小鹏, 黄璜. 虚拟现实实验中虚拟植物的建模[J]. 计算机工程, 2007, 33(23):215-217, 242. Dai Xiaopeng, Huang Huang. Virtual plants modeling in virtual reality lab[J]. Computer Engineering, 2007, 33(23):215-217, 242.
[31] Rutzinger M, Pratihast A K, Oude Elberink S, et al. Detection and modeling of 3D trees from mobile laser scanning data[C]//International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Commission V Symposium, Newcastle upon Tyne, UK:International Society for Photogrammetry and Remote Sensing. 2010, 520-525.
[32] Guo Y, Ma Y, Zhan Z, et al. Parameter optimization and field validation of the functional-structural model GREENLAB for maize[J]. Annals of Botany, 2006, 97(2):217-230.
[33] Boudon F, Pradal C, Cokelaer T, et al. L-Py:An L-system simulation framework for modeling plant architecture development based on a dynamic language[J]. Frontiers in Plant Science, 2012, 3(4):76.
[34] 康孟珍. 植物功能结构模型研究的回顾与展望[J]. 系统仿真学报, 2012, 24(10):2039-2048. Kang Mengzhen. Review and perspectives on research about functional-structural plant models[J]. Journal of System Simulation, 2012, 24(10):2039-2048.
[35] Xiao B, Guo X, Du X, et al. An interactive digital design system for corn modeling[J]. Mathematical and Computer Modelling, 2010, 51(11):1383-1389.
[36] Xiao B X, Guo X Y, Zhao C J, et al. Interactive animation system for virtual maize dynamic simulation[J]. IET Software, 2013, 7(5):249-257.
[37] Anastacio F, Prusinkiewicz P, Sousa M C. Sketch-based parameterization of L-systems using Illustration-inspired construction lines[C]//Sketch Based Interfaces & Modeling, Annecy, France:Eurographics Association 2008, 33(4):119-126.
[38] 马伟, 项波, 查红彬, 等. 基于测量数据的植物建模[J]. 中国科学(信息科学), 2009, 39(1):134-144. Ma Wei, Xiang Bo, Zha Hongbin, et al. Modeling plants with sensor data[J]. Science in China (Information Sciences), 2009, 39(1):134-144.
[39] Xiao B X, Guo X Y, Zhao C J. An approach of mocap datadriven animation for virtual plant[J]. IETE Journal of Research, 2013, 59(3):258-263.
[40] Quan L, Tan P, Zeng G, et al. Image-based plant modeling[J]. ACM Transactions on Graphics, 2006, 25(3):599-604.
[41] Du J J, Zhang Y, Guo X Y, et al. Micron-scale phenotyping quantification and three-dimensional microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning[J]. Functional Plant Biology, 2016, 44(1):10-22.
[42] Barzel R, Barr A. A modeling system based on dynamic constraints[C]//Proceedings of the 15th annual conference on Computer graphics and interactive techniques, Atlanta, Georgia:ACM New York, 1988, 22(4):179-188.
[43] Müller M, Heidelberger B, Hennix M, et al. Position based dynamics[J]. Journal of Visual Communication and Image Representation, 2007, 18(2):109-117.
[44] Qin H. Physics-based geometric design[J]. International Journal of Shape Modeling, 1996, 2(2-3):139-188.
[45] Qin H, Demitri T. D-NURBS:A physics-based geometric design framework[J]. IEEE Transactions on Visualization and Computer Graphics, 1996, 2(1):85-96.
[46] Qin H. Physics-based modeling framework for graphics, computer-aided design, and visualization[C]//In Proceedings of International Symposium on Computing and Microelectronics Technologies, Beijing:Peking University Press 1998:250-267.
[47] McDonnell Kevin T, Qin H. Dynamic sculpting and animation of free-form subdivision solids[C]//In Proceedings of IEEE Computer Animation 2000, Philadelphia:IEEE Computer Society, 2000:126-133.
[48] Du H X, Qin H. Dynamic PDE surfaces with flexible and general geometric constraints[C]//In Proceedings of the Eighth Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2000), Hong Kong:IEEE Computer Society 2000, 213-222.
[49] Du H X, Qin H. Direct manipulation and interactive sculpting of PDE surfaces[J]. Computer Graphics Forum, 2000, 19(3):C261-C270.
[50] Zhang M J, Qin H. Hierarchical D-NURBS surfaces and their physics-based sculpting[C]//In Proceedings of International Conference on Shape Modelling and Applications (SMI 2001), Genova:IEEE Computer Society, 2001, 257-266.
[51] McDonnell Kevin T, Qin H. FEM-based subdivision solids for dynamic and haptic interaction[C]//In Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, Ann Arbor, Michigan:ACM New York, 2001:312-313.
[52] Du H X, Qin H. Integrating physics-based modeling with PDE solids for geometric design[C]//In Proceedings of the Ninth Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2001), Tokyo:IEEE Computer Society, 2001, 198-209.
[53] Xie H, Qin H. A physics-based framework for subdivision surface design with automatic rules control[C]//In Proceedings of the Tenth Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2002), Beijing:IEEE Computer Society, 2002:304-315.
[54] Du H X, Qin H. Interactive shape design using volumetric implicit PDEs[C]//Proceedings of the 8th ACM Symposium on Solid Modeling and Applications (SM'03), Seattle, Washington:ACM New York, 2003:235-246.
[55] Duan Y, Yang L, Qin H. et al. Shape reconstruction from 3D and 2D data using PDE-based deformable surfaces[C]//Proceedings of The 8th European Conference on Computer Vision (Computer Vision-ECCV 2004), Part Ⅲ, Prague, Czech Republic:Springer, 2004:238-251.
[56] Duan Y, Hua J, Qin H. HapticFlow:PDE-based mesh editing with haptics[J]. Computer Animation and Virtual Worlds, 2004, 15(3-4):193-200.
[57] Du H X, Qin H. Medial axis extraction and shape manipulation of solid objects using parabolic PDEs[C]//Proceedings of The Ninth ACM Symposium on Solid Modeling and Applications (SM 2004), Genova:Eurographics Association, 2004:25-35.
[58] Du H X, Yoo T, Qin H. PDE-based medial axis extraction and shape manipulation of arbitrary meshes[J]. Journal of Systems Science and Complexity, 2008, 21(4):609-625.
[59] Wang S F, Hou T B, Li Si, et al. Anisotropic elliptic PDEs for feature classification[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(10):1606-1618.
[60] Du H X, Qin H. Dynamic PDE-based surface design using geometric and physical constraints[J]. Graphical Models 2005, 67(1):43-71.
[61] Bao Y F, Guo X H, Qin H. Physically-based morphing of point-sampled surfaces[J]. Computer Animation and Virtual Worlds, 2005, 16(3-4):509-518.
[62] Wang S F, Hou T B, Su Z X, et al. Diffusion tensor weighted harmonic fields for feature classification[C]//The 19th Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2011) Short Papers Proceedings, Kaohsiung:Eurographics Association, 2011:93-98.
[63] Guo X H, Qin Hg. Real-time mesh-free deformation[J]. Computer Animation and Virtual Worlds, 2005, 16(3-4):189-200.
[64] Guo X H, Li X, Bao Y F, et al. Meshless thin-shell simulation based on global conformal parameterization[J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(3):375-385.
[65] Tan Y H, Hua J, Qin H. Physically based modeling and simulation with dynamic spherical volumetric simplex splines[J]. Computer-Aided Design, 2010, 42(2):95-108.
[66] Huang H, Qin H, Yoo S, et al. Physics-based anomaly detection defined on manifold space[J]. ACM Transactions on Knowledge Discovery from Data, 2014, 9(2):1-39.
[67] Przemyslaw Prusinkiewicz, Pierre Barbier de Reuille. Constraints of space in plant development[J]. Journal of Experimental Botany, 2010, 61(8):2117-2129.
[68] 迟小羽, 盛斌, 陈彦云, 等. 基于物理的植物叶子形态变化过程仿真造型[J]. 计算机学报, 2009, 32(2):221-230. Chi Xiaoyu, Sheng Bin, Chen Yanyun, et al. Physically based simulation of weathering plant leaves[J]. Chinese Journal of Computers, 2009, 32(2):221-230.
[69] 陆声链, 赵春江, 郭新宇, 等. 双层弹簧模型驱动的植物叶片运动模拟[J]. 系统仿真学报, 2009, 21(14):4383-4386. Lu Shenglian, Zhao Chunjiang, Guo Xinyu, et al. Bi-Layered mass-spring model for leaf motions[J]. Journal of System Simulation, 2009, 21(14):4383-4386.
[70] 唐勇, 曹园园, 陆声链, 等. 三维植物叶片萎蔫变化实时模拟[J].计算机辅助设计与图形学学报, 2013, 25(11):1643-1650. Tang Yong, Cao Yuanyuan, Lu Shenglian, et al. The simulation of 3D plant leaves wilting[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(11):1643-1650.
[71] 肖伯祥, 吴升, 郭新宇. 基于物理约束的玉米叶片建模方法[J]. 应用基础与工程科学学报, 2018, 待发表. Xiao Boxiang, Wu Sheng, Guo Xinyu. Virtual maize leaf modeling based on physical constraints[J]. Journal of Basic Science and Engineering, 2018, in press.
[72] 苗腾, 郭新宇, 温维亮, 等. 植物叶片萎蔫过程的物理表示方法[J]. 农业机械学报, 2014, 45(5):253-258. Miao Teng, Guo Xinyu, Wen Weiliang, et al. Physical description of plant leaf wilting[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(5):253-258.
[73] Wang I R, Wan J W L, Baranoski G V G. Physically-based simulation of plant leaf growth[J]. Computer Animation & Virtual Worlds, 2004, 15(3-4):237-244.
[74] Li Jianfang, Liu Min, Xu Weiwei, et al. Boundary-dominant flower blooming simulation[J]. Computer Animation and Virtual Worlds, 2015, 26(3-4):433-443.
[75] Mcdonnell K T, Qin H. A novel framework for physically based sculpting and animation of free-form solids[J]. Visual Computer, 2007, 23(4):285-296.
[76] Xiao B X, Qin H. A new data-driven approach to massspring simulation of plants[C]//30th International Conference on Computer Animation and Social Agents (CASA 2017), Seoul, South Korea:KAIST School of Computing and Graduate School of Culture Technology, 2017, 65-74.
[77] Jeongy SoHyeon, Parkz Si Hyung, Kimx Chang Hun. Simulation of morphology changes in drying leaves[J]. Computer Graphics Forum, 2013, 32(1):204-215.
[78] 王伯维, 周庆敏. 基于物理的植物形变和运动建模[J]. 南京工业大学学报, 2006, 28(2):92-97. Wang Bowei, Zhou Qingmin. Physically based modeling of plant distortion and movement[J]. Journal of Nanjing University of Technology, 2006, 28(2):92-97.
[79] Akagi Y, Kitajima K. Computer animation of swaying trees based on physical simulation[J]. Computers & Graphics, 2006, 30(4):529-539.
[80] Ralf Habel, Alexander Kusternig, Michael Wimmer. Physically guided animation of trees[J]. Computer Graphics Forum, 2010, 28(2):523-532.
[81] Sören Pirk, Till Niese, Torsten Hädrich, et al. Windy trees:Computing stress response for developmental tree models[J]. ACM Transactions on Graphics, 2014, 33(6):204.
[82] Yang M, Huang M C, Wu Enhua. Physically-based tree animation and leaf deformation using CUDA in real-time[M]. Transactions on edutainment VI. Springer-Verlag, 2011:27-39.
[83] Mandal Chhandomay, Qin H, Vemuri Baba C. A subdivisionbased finite element method and its applications[C]//The Sixth SIAM Conference on Geometric Design, Albuquerque, Mexico:Society for Industrial and Applied Mathematics, 1999:56-57.
[84] Mandal Chhandomay, Qin H, Vemuri Baba C. A novel fembased dynamic framework for subdivision surfaces[C]//In Proceedings of Fifth ACM Symposium on Solid Modeling and Applications (Solid Modeling'99), Ann Arbor, Michigan:ACM New York, 1999:191-202.
[85] Qin H. FEM-Based dynamic subdivision splines[C]//In Proceedings of the Eighth Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2000), Hong Kong:IEEE Computer Society, 2000:184-191.
[86] Yang L P, Li S, Hao A M, et al. Realtime two-way coupling of meshless fluids and nonlinear FEM[J]. Computer Graphics Forum, 2012, 31(7):2037-2046.
[87] Yang C, Li S, Wang L L, et al. Real-time physical deformation and cutting of heterogeneous objects via hybrid coupling of meshless approach and finite element method[J]. Computer Animation and Virtual Worlds, 2014, 25(3-4):423-435.
[88] Barbic J, Zhao Y. Real-time large-deformation substructuring[J]. Acm Transactions on Graphics, 2011, 30(4):1-8.
[89] Stava O, Kratt J, Said M A M, et al. Plastic trees:Interactive self-adapting botanical tree models[J]. ACM Transactions on Graphics, 2012, 31(4):50.
[90] Wang B, Wu L H, Yin K K, et al. Deformation capture and modeling of soft objects[J]. ACM Transactions on Graphics, 2015, 34(4):94.
[91] Cai J P, Lin F, Lee Yong Tsui. Modeling and dynamics simulation for deformable objects of orthotropic materials[J]. The Visual Computer, 2016, 32(1):1-12.
[92] Dauda S M, Ahmad D, Khalina A, et al. Physical and mechanical properties of kenaf stems at varying moisture contents[J]. Agriculture and Agricultural Science Procedia, 2014, 2(2):370-374.
[93] Von Greg Forell, Robertson Daniel, Yang Shien Lee, et al. Preventing lodging in bioenergy crops:A biomechanical analysis of maize stalks suggests a new approach[J]. Journal of Experimental Botany, 2015, 66(14):4367-4371.
[94] Heidi Webber, Pierre Martre, Senthold Asseng, et al. Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment:A multi-model comparison[J]. Field Crops Research, 2017, 202(1):21-35.
[95] Webber H, Ewert F, Kimball B A, et al. Simulating canopy temperature for modelling heat stress in cereals[J]. Environmental Modelling & Software, 2016, 77(C):143-155.
[96] 刘建军, 肖永贵, 祝芳彬, 等. 不同基因型冬小麦冠层温度与产量性状的关系[J]. 麦类作物学报, 2009, 29(2):283-288. Liu Jianjun, Xiao Yonggui, Zhu Fangbin, et al. Effect of canopy temperature on yield traits of different genotypes of winter wheat[J]. Journal of Triticeae Crops, 2009, 29(2):283-288.
[97] 王锡平, 郭焱, 李保国, 等. 玉米冠层内太阳直接辐射三维空间分布的模拟[J]. 生态学报, 2005, 25(1):7-12. Wang Xiping, Guo Yan, Li Baoguo, et al. Modelling the three dimensional distribution of direct solar radiation in maize Canopy[J]. Acta Ecologica Sinica, 2005, 25(1):7-12.
[98] 温维亮, 孟军, 郭新宇, 等. 基于辐射照度的作物冠层光分布计算系统设计[J]. 农业机械学报, 2009, 40(增刊1):190-193. Wen Weiliang, Meng Jun, Guo Xinyu, et al. Calculation system of light distribution within crop canopy based on radiosity method[J]. Transactions of The Chinese Society of Agricultural Machinery, 2009, 40(Suppl 1):190-193.
[99] 程秀花. 温室环境因子时空分布CFD模型构建及预测分析研究[D]. 镇江:江苏大学农业装备工程学院, 2011. Cheng Xiuhua. Prediction and CFD modeling for greenhouse microclimates temporospatial distributions[D]. Zhenjiang:School of Agricultural Equipment Engineering, Jiangsu University, 2011.
[100] Bartzanas T, Bochtis D D, Green O, et al. Prediction of quality parameters for biomass silage:A CFD approach[J]. Computers and Electronics in Agriculture, 2013, 93(2):209-216.
[101] Chen F B, Wang C B, Xie B Y, et al. Flexible and rapid animation of brittle fracture using the smoothed particle hydrodynamics (SPH) formulation[J]. Computer Animation and Virtual Worlds, 2013, 24(3-4):215-224.
[102] Wang C B, Zhang Q, Kong F L, et al. Hybrid particle-grid fluid animation with enhanced details[J]. The Visual Computer, 2013, 29(9):937-947.
[103] Wang C, Wang C B, Qin H, et al. Video-based fluid reconstruction and its coupling with sph simulation[J]. The Visual Computer, 2017, 33(9):1211-1224.
[104] Akinci N, Ihmsen M, Akinci G, et al. Versatile rigid-fluid coupling for incompressible SPH[J]. ACM Transactions on Graphics, 2012, 31(4):1-8.
[105] Yin X, Shen X, Zhang F, et al. Particle-based simulation of fluid-solid coupling[J]. Communications in Computer & Information Science, 2013, 402:373-378.
[106] Sun H, Han J. Particle-based realistic simulation of fluidsolid interaction[J]. Computer Animation & Virtual Worlds, 2010, 21(6):589-595.