A review of non-invasive electroencephalogram-based brain computer interfaces

  • CHEN Xiaogang ,
  • WANG Yijun
  • 1. Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China;
    2. Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

Received date: 2018-05-01

  Revised date: 2018-05-22

  Online published: 2018-06-21


The brain computer interface(BCI) is a new communication and control channel between the brain and the external world that does not depend on the peripheral nerves and muscles, with a direct interaction between the brain and the external devices. Due to the advantages such as the noninvasiveness, the ease-of-use, and the low cost, the electroencephalogram(EEG) is the most popular method for current BCIs. This paper first reviews the history of the EEG-based non-invasive BCIs. Then, the focus is placed on the state-of-art of researches in three main aspects, namely the taxonomy of the current BCIs, the applications of the BCIs, and the challenges in developing the BCIs. Finally, a summary of future developments of the EEG-based BCI technology is given.

Cite this article

CHEN Xiaogang , WANG Yijun . A review of non-invasive electroencephalogram-based brain computer interfaces[J]. Science & Technology Review, 2018 , 36(12) : 22 -30 . DOI: 10.3981/j.issn.1000-7857.2018.12.004


[1] Vidal J J. Toward direct brain-computer communication[J]. An-nual Review of Biophysics and Bioengineering, 1973, 2(1):157-180.
[2] Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain comput-er interfaces for communication and control[J]. Clinical Neuro-physiology, 2002, 113(6):767-791.
[3] Lebedev M A, Nicolelis M A. Brain-machine interfaces:From basic science to neuroprostheses and neurorehabilitation[J]. Physiological Reviews, 2017, 97(2):767-837.
[4] Vidal J J. Real-time detection of brain events in EEG[J]. Pro-ceedings of the IEEE, 1977, 65(5):633-664.
[5] Farwell L A, Donchin E. Talking off the top of your head:To-ward a mental prosthesis utilizing event-related brain potentials[J]. Electroencephalography & Clinical Neurophysiology, 1988, 70(6):510-523.
[6] Wolpaw J R, McFarland D J, Neat G W, et al. An EEG-based brain-computer interface for cursor control[J]. Electroencepha-lography & Clinical Neurophysiology, 1991, 78(3):252-259.
[7] Pfurtscheller G, Flotzinger D, Kalcher J. Brain-computer inter-face:A new communication device for handicapped persons[J]. Journal of Microcomputer Applications, 1993, 16(3):293-299.
[8] Sutter E E. The brain response interface:Communication through visually-induced electrical brain responses[J]. Journal of Microcomputer Applications, 1992, 15(1):31-45.
[9] Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling de-vice for the paralyzed[J]. Nature, 1999, 398(6725):297-298.
[10] Bashashati A, Fatourechi M, Ward R K, et al. A survey of sig-nal processing algorithms in brain-computer interfaces based on electrical brain signals[J]. Journal of Neural Engineering, 2007, 4(2):R32-R57.
[11] Cheng M, Gao X, Gao S, et al. Design and implementation of a brain-computer interface with high transfer rates[J]. IEEE Transactions on Biomedical Engineering, 2002, 49(10):1181-1186.
[12] Guo F, Hong B, Gao X, et al. A brain-computer interface us-ing motion-onset visual evoked potential[J]. Journal of Neural Engineering, 2008, 5(4):477-485.
[13] Gao S, Wang Y, Gao X, et al. Visual and auditory brain-com-puter interfaces[J]. IEEE Transactions on Biomedical Engi-neering, 2014, 61(5):1436-1447.
[14] Müller-Putz G, Leeb R, Tangermann M, et al. Towards nonin-vasive hybrid brain-computer interfaces:Frame-work, prac-tice, clinical application, and beyond[J]. Proceedings of the IEEE, 2015, 103(6):926-943.
[15] Sellers E W, Donchin E. A P300-based brain-computer inter-face:Initial tests by ALS patients[J]. Clinical Neurophysiolo-gy, 2006, 117(3):538-548.
[16] Chaudhary U, Birbaumer N, Ramos-Murguialday A. Braincomputer interfaces for communication and rehabilitation[J]. Nature Reviews Neurology, 2016, 12(9):513-525.
[17] Marshall D, Coyle D, Wilson S, et al. Games, gameplay, and BCI:The state of the art[J]. IEEE Transactions on Computa-tional Intelligence and AI in Games, 2013, 5(2):82-99.
[18] Luck S J. An introduction to the event-related potential tech-nique[M]. Cambridge:MIT Press, 2005.
[19] Regan D. Human brain electrophysiology:Evoked potentials and evoked magnetic fields in science and medicine[M]. New York:Elsevier, 1989.
[20] Reza F R, Allison B Z, Christoph G, et al. P300 brain comput-er interface:Current challenges and emerging trends[J]. Fron-tiers in Neuroengineering, 2012, 5:14.
[21] Lee P L, Hsieh J C, Wu C H, et al. The brain computer inter-face using flash visual evoked potential and independent com-ponent analysis[J]. Annals of Biomedical Engineering, 2006, 34(10):1641-1654.
[22] Maye A, Zhang D, Engel A K. Utilizing retinotopic mapping for a multi-target SSVEP BCI with a single flicker frequency[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(7):1026-1036.
[23] Blankertz B, Lemm S, Treder M, et al. Single trial analysis and classification of ERP components:A tutorial[J]. Neuroim-age, 2011, 56(2):814-825.
[24] Wang Y, Gao X, Hong B, et al. Brain-computer interfaces based on visual evoked potentials-Feasibility of practical sys-tem designs[J]. IEEE Engineering in Medicine and Biology Magazine, 2008, 27(5):64-71.
[25] Yuan H, He B. Brain-computer interfaces using sensorimotor rhythms:Current state and future perspectives[J]. IEEE Trans-actions on Biomedical Engineering, 2014, 61(5):1425-1435.
[26] McFarland D J, Sarnacki W A, Wolpaw J R. Electroencepha-lographic (EEG) control of three-dimensional movement[J]. Journal of Neural Engineering, 2010, 7(3):036007.
[27] Pfurtscheller G, Brunner C, Schlogl A, et al. Mu rhythm (de) synchronization and EEG single-trial classification of differ-ent motor imagery tasks[J]. Neuroimage, 2006, 31(1):153-159.
[28] Li J, Wang Y, Zhang L, et al. Decoding EEG in cognitive tasks with time-frequency and connectivity masks[J]. IEEE Transactions on Cognitive and Developmental Systems, 2016, 8(4):298-308.
[29] Kai K A, Zheng Y C, Wang C, et al. Filter bank common spa-tial pattern algorithm on BCI competition IV datasets 2a and 2b[J]. Frontiers in Neuroscience, 2012, 6:39.
[30] Wang Y, Jung T P. Improving brain-computer interfaces us-ing independent component analysis[M]//Allison B, Dunne S, Leeb R, et al. Towards Practical Brain-Computer Interfaces:Bridging the Gap from Research to Real-World Applications. Heidelberg:Springer, 2013:67-83.
[31] Qin L, Ding L, He B. Motor imagery classification by means of source analysis for brain-computer interface applications[J]. Journal of Neural Engineering, 2005, 2(4):65-72.
[32] Wei Q, Wang Y, Gao X, et al. Amplitude and phase coupling measures for feature extraction in an EEG-based brain-com-puter interface[J]. Journal of Neural Engineering, 2007, 4(2):120-129.
[33] Lin K, Cinetto A, Wang Y, et al. An online hybrid BCI sys-tem based on SSVEP and EMG[J]. Journal of Neural Engi-neering, 2016, 13(2):026020.
[34] Fazli S, Mehnert J, Steinbrink J, et al. Enhanced performance by a hybrid NIRS-EEG brain computer interface[J]. Neuroim-age, 2012, 59(1):519-529.
[35] Pfurtscheller G, Allison B Z, Brunner C, et al. The Hybrid BCI[J]. Frontiers in Neuroscience, 2010, 2(30):30.
[36] Yin E, Zhou Z, Jiang J, et al. A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm[J]. Journal of Neural Engineering, 2013, 10(2):026012.
[37] Allison B Z, Brunner C, Kaiser V, et al. Toward a hybrid brain-computer interface based on imagined movement and visualattention[J]. Journal of Neural Engineering, 2010, 7(2):26007.
[38] Höhne J, Holz E, Staiger-Sälzer P, et al. Motor imagery for se-verely motor-impaired patients:Evidence for brain-computer interfacing as superior control solution[J]. PLoS One, 2014, 9(8):e104854.
[39] Müller K R, Tangermann M, Dornhege G, et al. Machine learning for real-time single-trial EEG-analysis:From braincomputer interfacing to mental state monitoring[J]. Journal of Neuroscience Methods, 2008, 167(1):82-90.
[40] Chen Z. A high-ITR SSVEP-based BCI speller[J]. BrainComputer Interfaces, 2014, 1(3/4):181-191.
[41] Chen X, Wang Y, Gao S, et al. Filter bank canonical correla-tion analysis for implementing a high-speed SSVEP-based brain-computer interface[J]. Journal of Neural Engineering, 2015, 12(4):046008.
[42] Nakanishi M, Wang Y, Wang Y T, et al. A high-speed brain speller using steady-state visual evoked potentials[J]. Interna-tional Journal of Neural Systems, 2014, 24(6):1450019.
[43] Chen X, Wang Y, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44):E6058-E6067.
[44] Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis[J]. IEEE Transactions on Biomedical En-gineering, 2018, 65(1):104-112.
[45] Nijboer F, Sellers E W, Mellinger J, et al. A P300-based brain-computer interface for people with amyotrophic lateral sclerosis[J]. Clinical Neurophysiology, 2008, 119(8):1909-1916.
[46] Mak J N, Wolpaw J R. Clinical Applications of brain-comput-er interfaces:Current state and future prospects[J]. IEEE Re-views in Biomedical Engineering, 2009, 2(1):187-199.
[47] Sellers E W, Vaughan T M, Wolpaw J R. A brain-computer interface for long-term independent home use[J]. Amyo-trophic Lateral Sclerosis & Other Motor Neuron Disorders, 2010, 11(5):449-455.
[48] Birbaumer N, Piccione F, Silvoni S, et al. Ideomotor silence:The case of complete paralysis and brain-computer interfaces (BCI)[J]. Psychological Research, 2012, 76(2):183-191.
[49] Van Dokkum L, Ward T, Laffont I. Brain computer interfaces for neurorehabilitation-Its current status as a rehabilitation strategy post-stroke[J]. Annals of Physical and Rehabilitation Medicine, 2015, 58(1):3-8.
[50] Zander T O, Kothe C. Towards passive brain-computer inter-faces:Applying brain-computer interface technology to hu-man-machine systems in genera[J]. Journal of Neural Engi-neering, 2011, 8(2):025005.
[51] Lotte F, Congedo M, Lecuyer A, et al. A review of classifica-tion algorithms for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2007, 4(2):R1-R13.
[52] Chi Y W, Wang Y T, Wang Y, et al. Dry and non-contact EEG sensors for mobile brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineer-ing, 2012, 20(2):228-235.