Articles

Differential proteomics analysis of the embryo in sorghum-sudangrass hybrid and its parents

  • XUE Chunlei ,
  • LU Xiaoping ,
  • HAN Pingan ,
  • ZHANG Kunming ,
  • ZHANG Ruixia ,
  • DONG Jing
Expand
  • 1. College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, China;
    2. Biological Research Center, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot 010020, China;
    3. Hohhot Seed Management Station, Hohhot 010019, China

Received date: 2017-11-01

  Revised date: 2018-04-26

  Online published: 2018-07-27

Abstract

Sorghum-sudangrass hybrids are annual gramineous forage crops with intergrated excellent parental traits. Their heterosis is particularly prominent, but the molecular mechanism of the heterosis is not yet very clear. To reveal the molecular mechanism, the mature embryos of sorghum-sudangrass hybrids and their parents are analyzed by the Label free mass spectrometry and the bioinformatics methods based on proteomics in this study. 124 differentially expressed proteins are identified, among which 48 are additive accumulation proteins, accounting for 38.71% of the total proteins. 19 and 29 of them are up-regulated proteins and down-regulated proteins, respectively. 76 of them are non-additive accumulation proteins, accounting for 61.29% of the total proteins. 29 proteins are of the above-high-parent expression, with the greatest proportion among the non-additive accumulation expression patterns. Followed by the high-parent expression patterns(18 proteins), the low-parent expression patterns (14 proteins), the below-low-parent expression patterns(10 proteins). Besides, there are 5 proteins which do not belong to the above four kinds of protein expression patterns. Therefore, non-additive proteins play especially dominant roles in the heterosis of the mature embryo of sorghum-sudangrass hybrids. Additive and non-additive accumulation proteins cover multiple functional groups, which involve the stress response, the carbohydrate metabolism, the transcriptional regulation, the development regulation, the signal transduction, the protein metabolism and others.

Cite this article

XUE Chunlei , LU Xiaoping , HAN Pingan , ZHANG Kunming , ZHANG Ruixia , DONG Jing . Differential proteomics analysis of the embryo in sorghum-sudangrass hybrid and its parents[J]. Science & Technology Review, 2018 , 36(14) : 88 -98 . DOI: 10.3981/j.issn.1000-7857.2018.14.012

References

[1] Lu X P, Yun J F, Gao C P, et al. Quantitative trait loci analysis of economically important traits in Sorghum bicolor S. sudanense hybrid[J]. Canadian Journal of Plant Science, 2011, 91(1):81-90.
[2] 韩平安, 逯晓萍, 王亚男, 等. 基于重组自交系群体的高丹草抗倒高产种质的筛选[J]. 中国草地学报, 2014, 36(5):51-57. Han Pingan, Lu Xiaoping, Wang Yanan, et al. Screening of the lodging-resistance and high-yielding germplasm of sorghum×sudan grass hybrid based on recombinant inbred line populations[J]. Acta Agrestia Sinica, 2014, 36(5):51-57.
[3] 于卓, 秦永梅, 赵晓杰, 等. 优良饲用作物新品种——蒙农青饲1号高丹草选育[J]. 中国草地, 2004(2):2-10. Yu Zhuo, Qin Yongmei, Zhao Xiaojie, et al. Breeding of forage crop-sorghum bicolor×sorghum sudanense cv. Mengnong Qingsi No.1[J]. Grassland of China, 2004(2):2-10.
[4] 于卓, 赵晓杰, 赵娜, 等. 蒙农青饲2号高丹草选育[J]. 草地学报, 2004, 12(3):176-182. Yu Zhuo, Zhao Xiaojie, Zhao Na, et al. Breeding of sorghum bicolor sorghum sudanense cv. Mengnong Qingsi No.2[J]. Acta Agrestia Sinica, 2004, 12(3):176-182.
[5] 于卓, 马艳红, 李小雷, 等. 蒙农3号高丹草选育[J]. 中国草地学报, 2008, 30(6):1-9 Yu Zhuo, Ma Yanhong, Li Xiaolei, et al. Breeding of sorghum bicolor×sorghum sudanense cv. Mengnong No.3[J]. Acta Agrestia Sinica, 2008, 30(6):1-9.
[6] 詹秋文, 钱章强. 高粱与苏丹草杂种优势利用的研究[J]. 作物学报, 2004, 30(1):73-77. Zhan Qiuwen, Qian Zhangqiang. Heterosis utilization of hybrid between Sorghum[Sorghum bicolor(L.) Moench] and Sudangrass[Sorghum sudanense(Piper)Stapf] [J]. Acta Agronomica Sinica, 2004, 30(1):73-77.
[7] 詹秋文, 林平, 钱章强. 皖草3号的选育及其特征特性[J]. 作物杂志, 2006(4):35-36. Zhan Qiuwen, Lin Ping, Qian Zhangqiang. Breeding and characteristics of Wan Grass No.3[J]. Crops, 2006(4):35-36.
[8] 薛春雷, 逯晓萍, 温莹, 等. 高丹草新品种GB-4-2选育研究[J]. 内蒙古农业科技, 2013(1):24-27. Xue Chunlei, Lu Xiaoping, Wen Ying, et al. Breeding of new sorghum bicolor×sorghum sudanense GB-4-2[J]. Inner Mongolia Agricultural Science and Technology, 2013(1):24-27.
[9] Panchaud A, Affolter M, Moreillon P, et al. Experimental and computational approaches to quantitative proteomics:Status quo and outlook[J]. Journal of Proteomics, 2008, 71(1):19-33.
[10] Domon B, Aebersold R. Mass spectrometry and protein analysis[J]. Science, 2006, 312(5771):212-217.
[11] Zhu W, Smith J W, Huang C M. Mass spectrometry-based label-free quantitative proteomics[J]. Journal of Biomedicine and Biotechnology, 2010, 2010(1):840518.
[12] Liu H, Sadygov R G, Yates J R. A model for random sampling and estimation of relative protein abundance in shotgun proteomics[J]. Analytical Chemistry, 2004, 76(14):4193-4201.
[13] Marcon C, Lamkemeyer T, Malik W A, et al. Heterosis-associated proteome analyses of maize (Zea mays L.) seminal roots by quantitative label-free LC-MS[J]. Journal of Proteomics, 2013, 93(19):295-302.
[14] Mohayeji M, Capriotti AL, Cavaliere C, et al. Heterosis profile of sunflower leaves:A label free proteomics approach[J]. Journal of Proteomics, 2014, 99(1):101-110.
[15] 进茜宁, 付志远, 丁冬, 等. 玉米杂交种先玉335及其亲本种子萌发过程中胚芽蛋白质组学分析[J]. 作物学报, 2011, 37(9):1689-1694. Jin Xining, Fu Zhiyuan, Ding Dong, et al. Proteomic analysis of plumule in seed germination for an elite hybrid pioneer 335 and its parental lines in maize[J]. Acta Agronomica Sinica, 2011, 37(9):1689-1694.
[16] Han B, Li C, Zhang L, et al. Novel royal jelly proteins identified by gel-based and gel-free proteomics[J]. Journal of Agricultural & Food Chemistry, 2011, 59(18):10346-10355.
[17] Elias J E, Gygi S P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry[J]. Nature Methods, 2007, 4(3):207-214.
[18] Wang Z, Xue Z, Wang T. Differential analysis of proteomes and metabolomes reveals additively balanced networking for metabolism in maize heterosis[J]. Journal of Proteome Research, 2014, 13(9):3987-4001.
[19] Hoecker N, Lamkemeyer T, Sarholz B, et al. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F(1)-hybrid compared to its parental inbred lines[J]. Proteomics, 2008, 8(18):3882.
[20] Duressa D, Soliman K M, Chen D, et al. Gene expression profiling in soybean under aluminum stress:Genes differentially expressed between Al-tolerant and Al-sensitive genotypes[J]. American Journal of Molecular Biology, 2011, 1(3):156-173.
[21] 刘洋, 邢鑫, 李德全. LEA蛋白的分类与功能研究进展[J]. 生物技术通报, 2011(8):36-43. Liu Yang, Xing Xin, Li Dequan. Studies on the classification and function of LFA Proteins[J]. Biotechnology Bulletin, 2011(8):36-43.
[22] 章成, 史冬燕, 曾黎琼, 等. 真核生物转录调控的研究进展[J]. 云南农业大学学报, 2007, 22(2):164-171. Zhang Cheng, Shi Dongyan, Zeng Liqion, et al. Research progress in gene transcription regulation in eukaryota[J]. Journal of Yunnan Agricultural University, 2007, 22(2):164-171.
[23] Baud S, Dichow N R, Kelemen Z, et al. Regulation of HSD1 in seeds of Arabidopsis thaliana[J]. Plant Cell Physiology, 2009, 50(8):1463-1478.
[24] 王艳, 柴宝峰, 梁爱华. 肽链释放因子识别终止密码子的机制[J]. 中国生物化学与分子生物学报, 2010, 26(1):22-29. Wang Yan, Chai Baofeng, Liang Aihua. Stop codon recognition mechanism of the polypeptide release factors[J]. Chinese Journal of Biochemistry Molecular Biology, 2010, 26(1):22-29.
[25] Dong M, Gu J, Zhang L, et al. Comparative proteomics analysis of superior and inferior spikelets in hybrid rice during grain filling and response of inferior spikelets to drought stress using isobaric tags for relative and absolute quantification[J]. Journal of Proteomics, 2014, 109:382-399.
Outlines

/