[1] Maltezos G, Johnston M, Taganov K, et al. Exploring the limits of ultrafast polymerase chain reaction using liquid for thermal heat exchange:A proof of principle[J]. Applied Physics Letters, 2010, 97(26):264101.
[2] Yeo L Y, Friend J R. Surface acoustic wave microfluidics[J]. Annual Review of Fluid Mechanics, 2014, 46(1):3626-3649.
[3] White R M, Voltmer F W. Direct piezoelectric coupling to surface elastic waves[J]. Applied Physics Letters, 1965, 7(12):314-316.
[4] 张冠, 李以贵. 基于声表面波的微驱动技术的发展[J]. 微纳电子技术, 2009, 46(9):540-545. Zhang Guan, Li Yigui. Trend of micro actuators based on surface scoustic waves[J]. MEMS Device & Technology, 2009, 46(9):540-545.
[5] 杨旭豪, 刘国君, 赵天, 等. 声表面波技术在微流控研究领域中的应用[J]. 微纳电子技术, 2014, 51(7):438-446. Yang Xuhao, Liu Guojun, Zhao Tian, et al. Applications of surface acoustic wave technology in the microfluidic research field[J]. MEMS Device & Technology, 2014, 51(7):438-446.
[6] Laurell T, Lenshof A. Microscale acoustofluidics[M]. London:Royal Society of Chemistry, 2014.
[7] King L V. On the acoustic radiation pressure on spheres[J]. Proceedings of the Royal Society of London, 1934, 147(861):212-240.
[8] Zhu X, Kim E S. Microfluidic motion generation with acoustic waves[J]. Sensors & Actuators A:Physical, 1997, 66(1/2/3):355-360.
[9] Strobl C J, Von G Z, Wixforth A. Nano-and pico-dispensing of fluids on planar substrates using SAW[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2004, 51(11):1432-1436.
[10] Alzuaga S, Manceau J F, Bastien F. Motion of droplets on solid surface using acoustic radiation pressure[J]. Journal of Sound & Vibration, 2005, 282(1):151-162.
[11] Wixforth A. Controlled agitation during hybridization:Surface acoustic waves are shaking up microarray technology[J]. Methods in Molecular Medicine, 2005, 114:121-145.
[12] Renaudin A, Tabourier P, Zhang V. SAW nanopump for handling droplets in view of biological applications[J]. Sensors & Actuators B:Chemical, 2006, 113(1):389-397.
[13] Go D B, Atashbar M Z, Ramshani Z, et al. Surface acoustic wave devices for chemical sensing and microfluidics:A review and perspective[J]. Analytical Methods, 2017, 9(28):4112-4134.
[14] 蒋鹏, 孟龙, 蔡飞燕, 等. 基于声表面波的微操控技术研究进展[J]. 集成技术, 2013(5):42-47. Jiang Peng, Meng Long, Cai Feiyan, et al. Progress in microscale acoustic manipulation based on surface acoustic wave[J]. Journal of Integration Technology, 2013(5):42-47.
[15] Alvarez M, Friend J R, Yeo L Y. Surface vibration induced spatial ordering of periodic polymer patterns on a substrate[J]. Langmuir, 2008, 24(19):10629-10632.
[16] Shi J, Ahmed D, Mao X, et al. Acoustic tweezers:Patterning cells and microparticles using standing surface acoustic waves (SSAW)[J]. Lab on a Chip, 2009, 9(20):2890-2895.
[17] Skowronek V, Rambach R W, Franke T. Surface acoustic wave controlled integrated band-pass filter[J]. Microfluidics & Nanofluidics, 2015, 19(2):1-7.
[18] Ma Z, Collins D J, Guo J, et al. Mechanical properties based particle separation via traveling surface acoustic wave[J]. Analytical Chemistry, 2016, 88(23):11844-11851.
[19] Ma Z, Collins D J, Ai Y. A detachable acoustofluidic system for particle separation via a travelling surface acoustic wave[J]. Analytical Chemistry, 2016, 88(10):5316-5323.
[20] Ma Z, Zhou Y, Collins D J, et al. Fluorescence activated cell sorting via a focused traveling surface acoustic beam[J]. Lab on a Chip, 2017, 17(18):3176-3185.
[21] Ding X, Peng Z, Lin S C, et al. Cell separation using tiltedangle standing surface acoustic waves[J]. Proceedings of the National Academy of Science, 2014, 111(36):12992-12997.
[22] Zhang J, Wei X, Xue X, et al. Structural design of microfluidic channels for blood plasma separation[J]. Journal of Nanoscience & Nanotechnology, 2014, 14(10):7419-7426.
[23] 张静静. 基于MEMS的微流控血浆分离技术研究[D]. 西安:西安交通大学, 2015. Zhang Jingjing. Research on MEMS-based microfluidic blood plasma separation[D]. Xi'an:Xi'an Jiaotong University, 2015.
[24] Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40):10584-10589.
[25] Li H, Friend J R, Yeo L Y. Surface acoustic wave concentration of particle and bioparticle suspensions[J]. Biomedical Microdevices, 2007, 9(5):647-656.
[26] Collins D J, Ma Z, Ye A. Highly localized acoustic streaming and size-selective submicrometer particle concentration using high frequency microscale focused acoustic fields[J]. Analytical Chemistry, 2016, 88(10):5513-5522
[27] Yu K, Wei X, Jiang Z, et al. Surface acoustic wave (SAW)-induced particle rotation and aggregation in microdroplet[C]//IEEE International Conference on Nano/molecular Medicine and Engineering. Piscataway, NJ:IEEE, 2017:138-143.
[28] Destgeer G, Jin H J, Park J, et al. Particle separation inside a sessile droplet with variable contact angle using surface acoustic waves[J]. Analytical Chemistry, 2017, 89(1):736-744.
[29] Destgeer G, Cho H, Ha B H, et al. Acoustofluidic particle manipulation inside a sessile droplet:Four distinct regimes of particle concentration[J]. Lab on a Chip, 2016, 16(4):660-667.
[30] Alhasan L, Qi A, Alabboodi A, et al. Rapid enhancement of cellular spheroid assembly by acoustically driven microcentrifugation[J]. ACS Biomaterials Science & Engineering, 2016, 2(6):1013-1022.
[31] Saiki T, Utsumi Y. High-efficiency mixing chip with liquid flow actuators operated by surface acoustic waves[J]. Electronics & Communications in Japan, 2014, 97(1):54-61.
[32] Nam J, Lim C S. A conductive liquid-based surface acoustic wave device[J]. Lab on a Chip, 2016, 16(19):3750-3755.
[33] Kondoh J, Shimizu N, Matsui Y, et al. Development of temperature-control system for liquid droplet using surface acoustic wave devices[J]. Sensors & Actuators A:Physical, 2009, 149(2):292-297.
[34] Roux-Marchand T, Beyssen D, Sarry F, et al. Temperature uniformity of microdroplet heated by Rayleigh Surface Acoustic Wave in view of biological reaction[C]//Ultrasonics Symposium. Piscataway, NJ:IEEE, 2014:1885-1888.
[35] Roux-Marchand T, Beyssen D, Sarry F, et al. Rayleigh surface acoustic wave as an efficient heating system for biological reactions:Investigation of microdroplet temperature uniformity[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2015, 62(4):729.
[36] Zhang A L, Zhang J S, Fu X T, et al. Heating microdroplets on a piezoelectric substrate using intermittent surface acoustic wave[J]. Ferroelectrics, 2015, 486(1):41-48.
[37] Ha B H, Kang S L, Destgeer G, et al. Acoustothermal heating of polydimethylsiloxane microfluidic system[J]. Scientific Reports, 2015, 5:11851.
[38] Park J, Ha B H, Destgeer G, et al. Paper microfluidic heating system using surface acousticwave for point-of-care diagnostics[C]//19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Gyeongju:KOASAS, 2015:1332-1334.
[39] Park J, Jung J H, Destgeer G, et al. Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip[J]. Lab on a Chip, 2017, 17(6):1031-1040.
[40] Shilton R J, Mattoli V, Travagliati M, et al. Rapid and controllable digital microfluidic heating by surface acoustic waves[J]. Advanced Functional Materials, 2015, 25(37):5895-5901.
[41] Wei X Y, Nan L, Ren J, et al. Surface acoustic wave induced thermal lysis of red blood cells in microfluidic channel[C/OL].[2018-03-31]. https://pdfs.semanticscholar.org/0b45/12956920daeed95976720a4bc1c92cef1753.pdf.
[42] Bartlett J M, Stirling D. A short history of the polymerase chain reaction[J]. Methods in Molecular Biology, 2003, 226(1):3-6.
[43] Maltezos G, Gomez A, Zhong J, et al. Microfluidic polymerase chain reaction[J]. Applied Physics Letters, 2008, 93(24):243901.
[44] Maltezos G, Johnston M, Taganov K, et al. Exploring the limits of ultrafast polymerase chain reaction using liquid for thermal heat exchange:A proof of principle[J]. Applied Physics Letters, 2010, 97(26):264101.
[45] Khandurina J, McKnight T E, Jacobson S C, et al. Integrated system for rapid PCR-based DNA analysis in microfluidic devices[J]. Analytical Chemistry, 2000, 72(13):2995-3000.
[46] Qiu X, Mauk M G, Chen D, et al. A large volume, portable, real-time PCR reactor[J]. Lab on a Chip, 2010, 10(22):3170-3177.
[47] Wang J, Hu H, Ye A, et al. Experimental investigation of surface acoustic wave atomization[J]. Sensors & Actuators A:Physical, 2016, 238:1-7.
[48] Collins D J, Manor O, Winkler A, et al. Atomization off thin water films generated by high-frequency substrate wave vibrations[J]. Physical Review E, 2012, 86(5):056312.
[49] Qi A, Friend J R, Yeo L Y, et al. Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization[J]. Lab on a Chip, 2009, 9(15):2184-2193.
[50] Alvarez M, Yeo L Y, Friend J R, et al. Rapid production of protein-loaded biodegradable microparticles using surface acoustic waves[J]. Biomicrofluidics, 2009, 3(1):014102.
[51] Alvarez M, Friend J, Yeo L Y. Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization[J]. Nanotechnology, 2008, 19(45):455103.
[52] Qi A, Chan P, Ho J, et al. Template-free synthesis and encapsulation technique for layer-by-layer polymer nanocarrier fabrication[J]. ACS Nano, 2011, 5(12):9583-9591.
[53] Ho J, Tan M K, Go D B, et al. Paper-based microfluidic surface acoustic wave sample delivery and ionization source for rapid and sensitive ambient mass spectrometry[J]. Analytical Chemistry, 2011, 83(9):3260-3266.
[54] 袁小平, 何杰, 刘荣贵, 等. 声表面波生物传感器发展与应用[J]. 压电与声光, 2014, 36(6):865-871. Yuan Xiaoping, He Jie, Liu Ronggui, et al. Development and applications of SAW biosensor technology[J]. Piezoelectrics & Acoustooptics, 2014, 36(6):865-871.
[55] 贾双荣, 陈鸣. 声表面波传感器技术及其在液相生物分析中的应用[J]. 中华检验医学杂志, 2011, 34(9):857-859. Jia Shuangrong, Chen Ming. The technology of SAW sensor and its application in biological analysis of liquid phase[J]. Chinese Journal of Laboratory Medicine, 2011, 34(9):857-859.
[56] Länge K, Rapp B E, Rapp M. Surface acoustic wave biosensors:A review[J]. Analytical & Bioanalytical Chemistry, 2008, 391(5):1509-1519.
[57] Howe E, Harding G. A comparison of protocols for the optimisation of detection of bacteria using a surface acoustic wave (SAW) biosensor[J]. Biosensors & Bioelectronics, 2000, 15(11):641-649.
[58] Bisoffi M, Hjelle B, Brown D C, et al. Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor[J]. Biosensors & Bioelectronics, 2008, 23(9):1397-1403.
[59] Wang Y, Chen M, Zhang L, et al. Rapid detection of human papilloma virus using a novel leaky surface acoustic wave peptide nucleic acid biosensor[J]. Biosensors & Bioelectronics, 2009, 24(12):3455-3460.
[60] Lee H J, Namkoong K, Cho E C, et al. Surface acoustic wave immunosensor for real-time detection of hepatitis B surface antibodies in whole blood samples[J]. Biosensors & Bioelectronics, 2009, 24(10):3120-3125.
[61] Senveli S U, Ao Z, Rawal S, et al. A surface acoustic wave biosensor for interrogation of single tumour cells in microcavities[J]. Lab on a Chip, 2015, 16(1):163-171.
[62] Tigli O, Bivona L, Berg P, et al. Fabrication and characterization of a surface-acoustic-wave biosensor in CMOS technology for cancer biomarker detection[J]. IEEE Transactions on Biomedical Circuits & Systems, 2010, 4(1):62-73.
[63] Chang K, Pi Y, Lu W, et al. Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array[J]. Biosensors & Bioelectronics, 2014, 60(6):318-324.
[64] Onursal O, Alper S, Gallant N D, et al. A urinary Bcl-2 surface acoustic wave biosensor for early ovarian cancer detection[J]. Sensors, 2012, 12(6):7423-7437.
[65] Luo J, Luo P, Xie M, et al. A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure[J]. Biosensors & Bioelectronics, 2013, 49(22):512-518.
[66] Di P F, Benetti M, Cannatà D, et al. A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules[J]. Biosensors & Bioelectronics, 2015, 67:516-523.
[67] Di P F, Cannatã D, Benetti M, et al. Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins[J]. Biosensors & Bioelectronics, 2013, 41(1):328-334.
[68] Pietrantonio F D, Benetti M, Cannata D, et al. Surface acoustic wave biosensor based on odorant binding proteins deposited by laser induced forward transfer[C]//Ultrasonics Symposium. Piscataway, NJ:IEEE, 2014:2144-2147.
[69] Pietrantonio F D, Benetti M, Dinca V, et al. Tailoring odorantbinding protein coatings characteristics for surface acoustic wave biosensor development[J]. Applied Surface Science, 2014, 302(5):250-255.
[70] Pietrantonio F D, Benetti M, Cannatà D, et al. A Shear horizontal surface acoustic wave biosensor for a rapid and specific detection of d -serine[J]. Sensors & Actuators B Chemical, 2016, 226:1-6.
[71] Beck K, Kunzelmann T, Schickfus M V, et al. Contactless surface acoustic wave gas sensor[J]. Sensors & Actuators A:Physical, 1999, 76(1-3):103-106.
[72] Asad M, Sheikhi M H. Surface acoustic wave based H2S gas sensors incorporating sensitive layers of single wall carbon nanotubes decorated with Cu nanoparticles[J]. Sensors & Actuators B:Chemical, 2014, 198(3):134-141.
[73] Lee J, Lee Y, Park J Y, et al. Sensitive and reproducible detection of cardiac troponin I in human plasma using a surface acoustic wave immunosensor[J]. Sensors & Actuators B:Chemical, 2013, 178(3):19-25.
[74] Gruhl F J, Länge K. Surface acoustic wave (SAW) biosensor for rapid and label-free detection of penicillin G in milk[J]. Food Analytical Methods, 2014, 7(2):430-437.
[75] Liu X, Wang J Y, Mao X B, et al. Single-shot analytical assay based on graphene-oxide-modified surface acoustic wave biosensor for detection of single-nucleotide polymorphisms[J]. Analytical Chemistry, 2015, 87(18):9352-9359.
[76] Zhang Y, Yang F, Sun Z, et al. A surface acoustic wave biosensor synergizing DNA-mediated in situ silver nanoparticle growth for a highly specific and signal-amplified nucleic acid assay[J]. Analyst, 2017, 142(18):3468-3476.
[77] Fourati N, Lazerges M, Vedrine C, et al. Surface acoustic waves sensor for DNA-biosensor development[J]. Sensor Letters, 2009, 7(5):847-850.
[78] Jin H, Tao X, Dong S, et al. Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome[J]. Journal of Micromechanics & Microengineering, 2017, 27(11):115006.
[79] Luo J K, He X, Zhou J, et al. Flexible and transparent surface acoustic wave microsensors and microfluidics[J]. Procedia Engineering, 2015, 120:717-720.
[80] Jin H, Zhou J, He X, et al. Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications[J]. Scientific Reports, 2013, 3(7):2140.
[81] Li Q, Liu H, Li G, et al. Growth and characterization of polyimide-supported AlN films for flexible surface acoustic wave devices[J]. Journal of Electronic Materials, 2016, 45(6):2702-2709.