Exclusive

Research progress of microfluidic technology based on surface acoustic waves

  • WEI Xueyong ,
  • JIN Shaobo ,
  • LIU Zhen ,
  • YU Keyang ,
  • JIANG Zhuangde
Expand
  • State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2018-07-17

  Revised date: 2018-08-03

  Online published: 2018-08-29

Abstract

In recent years, the microfluidics technology based on the surface acoustic waves (SAW) has attracted a wide attention due to its many advantages such as simple and efficient generation and control of the SAW, multiple interacting forms between the SAW and the fluids, simple manufacturing process, and easy to integrate and detect. At present, as far as the biochemical analysis and the medical detection are concerned, the research of the SAW based microfluidic technology is mainly focused on the cells/particles sorting, the separation, mixing and concentration, the acoustic heating, the acoustic atomization, and the biological sensing. Some prototypes have almost reached the maturity stage, to be developed into portable devices with a huge prospective market. In this paper, the research of the microfluidic technology based on the SAW for the cells/particles sorting, separation, mixing and concentration, the acoustic heating, the acoustic atomization, the biological sensing reported in the last twenty years is reviewed, as well as the related research trend from a single effect study of acoustoforce, acoustothermal and acoustoelectric to the study of multiple physical effects, from two dimensional and micro manipulation to three dimensional and nano manipulation, and from planar device to flexible device.

Cite this article

WEI Xueyong , JIN Shaobo , LIU Zhen , YU Keyang , JIANG Zhuangde . Research progress of microfluidic technology based on surface acoustic waves[J]. Science & Technology Review, 2018 , 36(16) : 8 -19 . DOI: 10.3981/j.issn.1000-7857.2018.16.001

References

[1] Maltezos G, Johnston M, Taganov K, et al. Exploring the limits of ultrafast polymerase chain reaction using liquid for thermal heat exchange:A proof of principle[J]. Applied Physics Letters, 2010, 97(26):264101.
[2] Yeo L Y, Friend J R. Surface acoustic wave microfluidics[J]. Annual Review of Fluid Mechanics, 2014, 46(1):3626-3649.
[3] White R M, Voltmer F W. Direct piezoelectric coupling to surface elastic waves[J]. Applied Physics Letters, 1965, 7(12):314-316.
[4] 张冠, 李以贵. 基于声表面波的微驱动技术的发展[J]. 微纳电子技术, 2009, 46(9):540-545. Zhang Guan, Li Yigui. Trend of micro actuators based on surface scoustic waves[J]. MEMS Device & Technology, 2009, 46(9):540-545.
[5] 杨旭豪, 刘国君, 赵天, 等. 声表面波技术在微流控研究领域中的应用[J]. 微纳电子技术, 2014, 51(7):438-446. Yang Xuhao, Liu Guojun, Zhao Tian, et al. Applications of surface acoustic wave technology in the microfluidic research field[J]. MEMS Device & Technology, 2014, 51(7):438-446.
[6] Laurell T, Lenshof A. Microscale acoustofluidics[M]. London:Royal Society of Chemistry, 2014.
[7] King L V. On the acoustic radiation pressure on spheres[J]. Proceedings of the Royal Society of London, 1934, 147(861):212-240.
[8] Zhu X, Kim E S. Microfluidic motion generation with acoustic waves[J]. Sensors & Actuators A:Physical, 1997, 66(1/2/3):355-360.
[9] Strobl C J, Von G Z, Wixforth A. Nano-and pico-dispensing of fluids on planar substrates using SAW[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2004, 51(11):1432-1436.
[10] Alzuaga S, Manceau J F, Bastien F. Motion of droplets on solid surface using acoustic radiation pressure[J]. Journal of Sound & Vibration, 2005, 282(1):151-162.
[11] Wixforth A. Controlled agitation during hybridization:Surface acoustic waves are shaking up microarray technology[J]. Methods in Molecular Medicine, 2005, 114:121-145.
[12] Renaudin A, Tabourier P, Zhang V. SAW nanopump for handling droplets in view of biological applications[J]. Sensors & Actuators B:Chemical, 2006, 113(1):389-397.
[13] Go D B, Atashbar M Z, Ramshani Z, et al. Surface acoustic wave devices for chemical sensing and microfluidics:A review and perspective[J]. Analytical Methods, 2017, 9(28):4112-4134.
[14] 蒋鹏, 孟龙, 蔡飞燕, 等. 基于声表面波的微操控技术研究进展[J]. 集成技术, 2013(5):42-47. Jiang Peng, Meng Long, Cai Feiyan, et al. Progress in microscale acoustic manipulation based on surface acoustic wave[J]. Journal of Integration Technology, 2013(5):42-47.
[15] Alvarez M, Friend J R, Yeo L Y. Surface vibration induced spatial ordering of periodic polymer patterns on a substrate[J]. Langmuir, 2008, 24(19):10629-10632.
[16] Shi J, Ahmed D, Mao X, et al. Acoustic tweezers:Patterning cells and microparticles using standing surface acoustic waves (SSAW)[J]. Lab on a Chip, 2009, 9(20):2890-2895.
[17] Skowronek V, Rambach R W, Franke T. Surface acoustic wave controlled integrated band-pass filter[J]. Microfluidics & Nanofluidics, 2015, 19(2):1-7.
[18] Ma Z, Collins D J, Guo J, et al. Mechanical properties based particle separation via traveling surface acoustic wave[J]. Analytical Chemistry, 2016, 88(23):11844-11851.
[19] Ma Z, Collins D J, Ai Y. A detachable acoustofluidic system for particle separation via a travelling surface acoustic wave[J]. Analytical Chemistry, 2016, 88(10):5316-5323.
[20] Ma Z, Zhou Y, Collins D J, et al. Fluorescence activated cell sorting via a focused traveling surface acoustic beam[J]. Lab on a Chip, 2017, 17(18):3176-3185.
[21] Ding X, Peng Z, Lin S C, et al. Cell separation using tiltedangle standing surface acoustic waves[J]. Proceedings of the National Academy of Science, 2014, 111(36):12992-12997.
[22] Zhang J, Wei X, Xue X, et al. Structural design of microfluidic channels for blood plasma separation[J]. Journal of Nanoscience & Nanotechnology, 2014, 14(10):7419-7426.
[23] 张静静. 基于MEMS的微流控血浆分离技术研究[D]. 西安:西安交通大学, 2015. Zhang Jingjing. Research on MEMS-based microfluidic blood plasma separation[D]. Xi'an:Xi'an Jiaotong University, 2015.
[24] Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40):10584-10589.
[25] Li H, Friend J R, Yeo L Y. Surface acoustic wave concentration of particle and bioparticle suspensions[J]. Biomedical Microdevices, 2007, 9(5):647-656.
[26] Collins D J, Ma Z, Ye A. Highly localized acoustic streaming and size-selective submicrometer particle concentration using high frequency microscale focused acoustic fields[J]. Analytical Chemistry, 2016, 88(10):5513-5522
[27] Yu K, Wei X, Jiang Z, et al. Surface acoustic wave (SAW)-induced particle rotation and aggregation in microdroplet[C]//IEEE International Conference on Nano/molecular Medicine and Engineering. Piscataway, NJ:IEEE, 2017:138-143.
[28] Destgeer G, Jin H J, Park J, et al. Particle separation inside a sessile droplet with variable contact angle using surface acoustic waves[J]. Analytical Chemistry, 2017, 89(1):736-744.
[29] Destgeer G, Cho H, Ha B H, et al. Acoustofluidic particle manipulation inside a sessile droplet:Four distinct regimes of particle concentration[J]. Lab on a Chip, 2016, 16(4):660-667.
[30] Alhasan L, Qi A, Alabboodi A, et al. Rapid enhancement of cellular spheroid assembly by acoustically driven microcentrifugation[J]. ACS Biomaterials Science & Engineering, 2016, 2(6):1013-1022.
[31] Saiki T, Utsumi Y. High-efficiency mixing chip with liquid flow actuators operated by surface acoustic waves[J]. Electronics & Communications in Japan, 2014, 97(1):54-61.
[32] Nam J, Lim C S. A conductive liquid-based surface acoustic wave device[J]. Lab on a Chip, 2016, 16(19):3750-3755.
[33] Kondoh J, Shimizu N, Matsui Y, et al. Development of temperature-control system for liquid droplet using surface acoustic wave devices[J]. Sensors & Actuators A:Physical, 2009, 149(2):292-297.
[34] Roux-Marchand T, Beyssen D, Sarry F, et al. Temperature uniformity of microdroplet heated by Rayleigh Surface Acoustic Wave in view of biological reaction[C]//Ultrasonics Symposium. Piscataway, NJ:IEEE, 2014:1885-1888.
[35] Roux-Marchand T, Beyssen D, Sarry F, et al. Rayleigh surface acoustic wave as an efficient heating system for biological reactions:Investigation of microdroplet temperature uniformity[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2015, 62(4):729.
[36] Zhang A L, Zhang J S, Fu X T, et al. Heating microdroplets on a piezoelectric substrate using intermittent surface acoustic wave[J]. Ferroelectrics, 2015, 486(1):41-48.
[37] Ha B H, Kang S L, Destgeer G, et al. Acoustothermal heating of polydimethylsiloxane microfluidic system[J]. Scientific Reports, 2015, 5:11851.
[38] Park J, Ha B H, Destgeer G, et al. Paper microfluidic heating system using surface acousticwave for point-of-care diagnostics[C]//19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Gyeongju:KOASAS, 2015:1332-1334.
[39] Park J, Jung J H, Destgeer G, et al. Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip[J]. Lab on a Chip, 2017, 17(6):1031-1040.
[40] Shilton R J, Mattoli V, Travagliati M, et al. Rapid and controllable digital microfluidic heating by surface acoustic waves[J]. Advanced Functional Materials, 2015, 25(37):5895-5901.
[41] Wei X Y, Nan L, Ren J, et al. Surface acoustic wave induced thermal lysis of red blood cells in microfluidic channel[C/OL].[2018-03-31]. https://pdfs.semanticscholar.org/0b45/12956920daeed95976720a4bc1c92cef1753.pdf.
[42] Bartlett J M, Stirling D. A short history of the polymerase chain reaction[J]. Methods in Molecular Biology, 2003, 226(1):3-6.
[43] Maltezos G, Gomez A, Zhong J, et al. Microfluidic polymerase chain reaction[J]. Applied Physics Letters, 2008, 93(24):243901.
[44] Maltezos G, Johnston M, Taganov K, et al. Exploring the limits of ultrafast polymerase chain reaction using liquid for thermal heat exchange:A proof of principle[J]. Applied Physics Letters, 2010, 97(26):264101.
[45] Khandurina J, McKnight T E, Jacobson S C, et al. Integrated system for rapid PCR-based DNA analysis in microfluidic devices[J]. Analytical Chemistry, 2000, 72(13):2995-3000.
[46] Qiu X, Mauk M G, Chen D, et al. A large volume, portable, real-time PCR reactor[J]. Lab on a Chip, 2010, 10(22):3170-3177.
[47] Wang J, Hu H, Ye A, et al. Experimental investigation of surface acoustic wave atomization[J]. Sensors & Actuators A:Physical, 2016, 238:1-7.
[48] Collins D J, Manor O, Winkler A, et al. Atomization off thin water films generated by high-frequency substrate wave vibrations[J]. Physical Review E, 2012, 86(5):056312.
[49] Qi A, Friend J R, Yeo L Y, et al. Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization[J]. Lab on a Chip, 2009, 9(15):2184-2193.
[50] Alvarez M, Yeo L Y, Friend J R, et al. Rapid production of protein-loaded biodegradable microparticles using surface acoustic waves[J]. Biomicrofluidics, 2009, 3(1):014102.
[51] Alvarez M, Friend J, Yeo L Y. Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization[J]. Nanotechnology, 2008, 19(45):455103.
[52] Qi A, Chan P, Ho J, et al. Template-free synthesis and encapsulation technique for layer-by-layer polymer nanocarrier fabrication[J]. ACS Nano, 2011, 5(12):9583-9591.
[53] Ho J, Tan M K, Go D B, et al. Paper-based microfluidic surface acoustic wave sample delivery and ionization source for rapid and sensitive ambient mass spectrometry[J]. Analytical Chemistry, 2011, 83(9):3260-3266.
[54] 袁小平, 何杰, 刘荣贵, 等. 声表面波生物传感器发展与应用[J]. 压电与声光, 2014, 36(6):865-871. Yuan Xiaoping, He Jie, Liu Ronggui, et al. Development and applications of SAW biosensor technology[J]. Piezoelectrics & Acoustooptics, 2014, 36(6):865-871.
[55] 贾双荣, 陈鸣. 声表面波传感器技术及其在液相生物分析中的应用[J]. 中华检验医学杂志, 2011, 34(9):857-859. Jia Shuangrong, Chen Ming. The technology of SAW sensor and its application in biological analysis of liquid phase[J]. Chinese Journal of Laboratory Medicine, 2011, 34(9):857-859.
[56] Länge K, Rapp B E, Rapp M. Surface acoustic wave biosensors:A review[J]. Analytical & Bioanalytical Chemistry, 2008, 391(5):1509-1519.
[57] Howe E, Harding G. A comparison of protocols for the optimisation of detection of bacteria using a surface acoustic wave (SAW) biosensor[J]. Biosensors & Bioelectronics, 2000, 15(11):641-649.
[58] Bisoffi M, Hjelle B, Brown D C, et al. Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor[J]. Biosensors & Bioelectronics, 2008, 23(9):1397-1403.
[59] Wang Y, Chen M, Zhang L, et al. Rapid detection of human papilloma virus using a novel leaky surface acoustic wave peptide nucleic acid biosensor[J]. Biosensors & Bioelectronics, 2009, 24(12):3455-3460.
[60] Lee H J, Namkoong K, Cho E C, et al. Surface acoustic wave immunosensor for real-time detection of hepatitis B surface antibodies in whole blood samples[J]. Biosensors & Bioelectronics, 2009, 24(10):3120-3125.
[61] Senveli S U, Ao Z, Rawal S, et al. A surface acoustic wave biosensor for interrogation of single tumour cells in microcavities[J]. Lab on a Chip, 2015, 16(1):163-171.
[62] Tigli O, Bivona L, Berg P, et al. Fabrication and characterization of a surface-acoustic-wave biosensor in CMOS technology for cancer biomarker detection[J]. IEEE Transactions on Biomedical Circuits & Systems, 2010, 4(1):62-73.
[63] Chang K, Pi Y, Lu W, et al. Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array[J]. Biosensors & Bioelectronics, 2014, 60(6):318-324.
[64] Onursal O, Alper S, Gallant N D, et al. A urinary Bcl-2 surface acoustic wave biosensor for early ovarian cancer detection[J]. Sensors, 2012, 12(6):7423-7437.
[65] Luo J, Luo P, Xie M, et al. A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure[J]. Biosensors & Bioelectronics, 2013, 49(22):512-518.
[66] Di P F, Benetti M, Cannatà D, et al. A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules[J]. Biosensors & Bioelectronics, 2015, 67:516-523.
[67] Di P F, Cannatã D, Benetti M, et al. Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins[J]. Biosensors & Bioelectronics, 2013, 41(1):328-334.
[68] Pietrantonio F D, Benetti M, Cannata D, et al. Surface acoustic wave biosensor based on odorant binding proteins deposited by laser induced forward transfer[C]//Ultrasonics Symposium. Piscataway, NJ:IEEE, 2014:2144-2147.
[69] Pietrantonio F D, Benetti M, Dinca V, et al. Tailoring odorantbinding protein coatings characteristics for surface acoustic wave biosensor development[J]. Applied Surface Science, 2014, 302(5):250-255.
[70] Pietrantonio F D, Benetti M, Cannatà D, et al. A Shear horizontal surface acoustic wave biosensor for a rapid and specific detection of d -serine[J]. Sensors & Actuators B Chemical, 2016, 226:1-6.
[71] Beck K, Kunzelmann T, Schickfus M V, et al. Contactless surface acoustic wave gas sensor[J]. Sensors & Actuators A:Physical, 1999, 76(1-3):103-106.
[72] Asad M, Sheikhi M H. Surface acoustic wave based H2S gas sensors incorporating sensitive layers of single wall carbon nanotubes decorated with Cu nanoparticles[J]. Sensors & Actuators B:Chemical, 2014, 198(3):134-141.
[73] Lee J, Lee Y, Park J Y, et al. Sensitive and reproducible detection of cardiac troponin I in human plasma using a surface acoustic wave immunosensor[J]. Sensors & Actuators B:Chemical, 2013, 178(3):19-25.
[74] Gruhl F J, Länge K. Surface acoustic wave (SAW) biosensor for rapid and label-free detection of penicillin G in milk[J]. Food Analytical Methods, 2014, 7(2):430-437.
[75] Liu X, Wang J Y, Mao X B, et al. Single-shot analytical assay based on graphene-oxide-modified surface acoustic wave biosensor for detection of single-nucleotide polymorphisms[J]. Analytical Chemistry, 2015, 87(18):9352-9359.
[76] Zhang Y, Yang F, Sun Z, et al. A surface acoustic wave biosensor synergizing DNA-mediated in situ silver nanoparticle growth for a highly specific and signal-amplified nucleic acid assay[J]. Analyst, 2017, 142(18):3468-3476.
[77] Fourati N, Lazerges M, Vedrine C, et al. Surface acoustic waves sensor for DNA-biosensor development[J]. Sensor Letters, 2009, 7(5):847-850.
[78] Jin H, Tao X, Dong S, et al. Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome[J]. Journal of Micromechanics & Microengineering, 2017, 27(11):115006.
[79] Luo J K, He X, Zhou J, et al. Flexible and transparent surface acoustic wave microsensors and microfluidics[J]. Procedia Engineering, 2015, 120:717-720.
[80] Jin H, Zhou J, He X, et al. Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications[J]. Scientific Reports, 2013, 3(7):2140.
[81] Li Q, Liu H, Li G, et al. Growth and characterization of polyimide-supported AlN films for flexible surface acoustic wave devices[J]. Journal of Electronic Materials, 2016, 45(6):2702-2709.
Outlines

/