[1] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 2006, 442(7101):381-386.
[2] Monat C, Domachuk P, Eggleton B J. Integrated optofluidics:A new river of light[J]. Nature Photonics, 2007, 1(2):106-114.
[3] Horowitz V R, Awschalom D D, Pennathur S. Optofluidics:Field or technique[J]. Lab on a Chip, 2008, 8(11):1856-1863.
[4] Erickson D, Sinton D, Psaltis D. Optofluidics for energy applications[J]. Nature Photonics, 2011, 5(10):583-590.
[5] Bao B, Melo L, Davies B, et al. Detecting supercritical CO2 in brine at sequestration pressure with an optical fiber sensor[J]. Environmental Science & Technology, 2013, 47(1):306-313.
[6] Liu P Y, Chin L K, Ser W, et al. An optofluidic imaging system to measure the biophysical signature of single waterborne bacteria[J]. Lab on a Chip, 2014, 14(21):4237-4243.
[7] Liu P Y, Chin L K, Ser W, et al. Cell refractive index for cell biology and disease diagnosis:Past, present and future[J]. Lab on a Chip, 2016, 16(4):634-644.
[8] Zhu J M, Shi Y, Zhu X Q, et al. Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator[J]. Lab on A Chip, 2017, 17(23):4025-4030.
[9] Shi Y, Zhu X Q, Liang L, et al. Tunable focusing properties using optofluidic Fresnel zone plates[J]. Lab on a Chip, 2016, 16(23):4554-4559.
[10] Yang Y, Liu A Q, Chin L K, et al. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation[J]. Nature Communications, 2012, 3(48):651.
[11] Zhao H T, Yang Y, Chin L K, et al. Optofluidic lens with low spherical and low field curvature aberrations[J]. Lab on a Chip, 2016, 16(9):1617-1624.
[12] Zhu X, Liang L, Zuo Y, et al. Tunable visible cloaking using liquid diffusion[J]. Laser & Photonics Reviews, 2017, 11(6):1700066.
[13] Liu H L, Liang L, Zhu X Q, et al. Tunable transformation optical waveguide bends in liquid[J]. Optica, 2017, 4(8):839-846.
[14] Li L, Zhu X Q, Liang L, et al. Switchable 3D optofluidic Ybranch waveguides tuned by Dean flows[J]. Scientific Reports, 2016, 6:38338.
[15] Roquescarmes T, Gigante A, Commenge J M, et al. Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting[J]. Langmuir, 2009, 25(21):12771-12779.
[16] Yang Y, Chin L K, Tsai J M, et al. Transformation optofluidics for large-angle light bending and tuning[J]. Lab on a Chip, 2012, 12(19):3785-3790.
[17] Hashimoto M, Mayers B, Garstecki P, et al. Flowing lattices of bubbles as tunable, self-assembled diffraction gratings[J]. Small, 2010, 2(11):1292-1298.
[18] Wu W, Zhu X, Zuo Y, et al. Precise sorting of gold nanoparticles in flowing system[J]. 2016. 3(12):2497-2504.
[19] Croningolomb M, Omenetto F, Eggleton B J. Applications of optical tweezers to optofluidics[J]. Optofluidics, 2006, 6329:63290B.
[20] Liu H L, Shi Y, Liang L, et al. A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments[J]. Lab on a Chip, 2017, 17(7):1280-1286.
[21] Cho H, Kim H Y, Kang J Y, et al. Capillary passive valve in microfluidic systems[J]. 2004, 1:263-266.
[22] Selvaganapathy P, Carlen E T, Mastrangelo C H. Electrothermally actuated inline microfluidic valve[J]. Sensors & Actuators A:Physical, 2003, 104(3):275-282.
[23] Kumar A, Rajesh R, Singhal G, et al. Analysis of various optical pumping schemes for liquid oxygen lasers[J]. Applied Physics B, 2007, 89(2/3):385-394.
[24] Xin Z. Soild and liquid Xe-129 NMR signals enhanced by spin-exchange optical pumping under flow[J]. Acta Physica Sinica, 2002, 51(10):2223-2224.
[25] Fan X, White I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 2011, 5(10):591-597.
[26] Zhang Y N, Zhao Y, Zhou T, et al. Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities[J]. Lab on a Chip, 2017, 18(4):57-74.
[27] Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic crystals:Molding the flow of light[M]. Princeton:Princeton University Press, 2008, 3(6):38-47.
[28] Nair R V, Vijaya R. Photonic crystal sensors:An overview[J]. Progress in Quantum Electronics, 2010, 34(3):89-134.
[29] Mortensen N A, Xiao S, Pedersen J. Liquid-infiltrated photonic crystals:Enhanced light-matter interactions for lab-on-achip applications[J]. Microfluidics & Nanofluidics, 2008, 4(1/2):117-127.
[30] Sünner T, Stichel T, Kwon S H, et al. Photonic crystal cavity based gas sensor[J]. Applied Physics Letters, 2008, 92(26):2486.
[31] Zhang H, Jágerská J, Thomas N L, et al. Refractive index sensing with an air-slot photonic crystal nanocavity[J]. Optics Letters, 2010, 35(15):2523-2525.
[32] Li K, Li J, Song Y, et al. L-n slot photonic crystal microcavity for refractive index gas sensing[J]. IEEE Photonics Journal, 2014, 6(5):1-9.
[33] Zhang Y N, Zhao Y, Wang Q. Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity[J]. Sensors & Actuators B:Chemical, 2015, 209(209):431-437.
[34] Falco A D, Ofaolain L, Krauss T F. Chemical sensing in slotted photonic crystal heterostructure cavities[J]. Applied Physics Letters, 2009, 94(6):063503.
[35] Lai W C, Chakravarty S, Zou Y, et al. Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors[J]. Applied Physics Letters, 2013, 102(4):041111.
[36] Zhou J, Tian H, Yang D, et al. Integration of high transmittance photonic crystal H2 nanocavity and broadband W1 waveguide for biosensing applications based on Silicon-on-Insulator substrate[J]. Optics Communications, 2014, 330(330):175-183.
[37] Zhang Y N, Zhao Y, Hu H F. Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature[J]. Sensors & Actuators B:Chemical, 2015, 216:563-571.
[38] Domachuk P, Littler I C M, Croningolomb M, et al. Compact resonant integrated microfluidic refractometer[J]. Applied Physics Letters, 2006, 88(9):330A.
[39] He Z, Tian F, Zhu Y, et al. Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor[J]. Biosensors & Bioelectronics, 2011, 26(12):4774-4778.
[40] Wu C, Tse M L, Liu Z, et al. In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer[J]. Analyst, 2014, 139(21):5422-5429.
[41] Zhang N, Humbert G, Wu Z, et al. In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber[J]. Optics Express, 2016, 24(24):27674.
[42] Suter J D, Fan X. Overview of the optofluidic ring resonator:A versatile platform for label-free biological and chemical sensing[C]//International Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway NJ:IEEE:IEEE, 2009:1042.
[43] Li M, Wu X, Liu L, et al. Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection[J]. Analytical Chemistry, 2013, 85(19):9328-9332.
[44] Luo Y, Chen X, Xu M, et al. Optofluidic glucose detection by capillary-based ring resonators[J]. Optics & Laser Technology, 2014, 56(1):12-14.
[45] Scholten K, Fan X, Zellers E T. A microfabricated optofluidic ring resonator for sensitive, high-speed detection of volatile organic compounds[J]. Lab on a Chip, 2014, 14(19):3873-3880.
[46] Fan X, White I M, Zhu H, et al. Overview of novel integrated optical ring resonator bio/chemical sensors[C]//Laser Resonators and Beam Control IX. Bellingham WA:International Society for Optics and Photonics, 2007, 6452:64520M.
[47] Zhu H, White I M, Suter J D, et al. Opto-fluidic micro-ring resonator for sensitive label-free viral detection[J]. Analyst, 2008, 133(3):356-360.
[48] Suter J D, Howard D J, Shi H, et al. Label-free DNA methylation analysis using opto-fluidic ring resonators[J]. Biosensors & Bioelectronics, 2010, 26(3):1016-1020.
[49] Zhu H, White I M, Suter J D, et al. Phage-based label-free biomolecule detection in an opto-fluidic ring resonator[J]. Biosensors & Bioelectronics, 2008, 24(3):461-466.
[50] Zhi Y, Yu X, Gong Q, et al. Single nanoparticle detection using optical microcavities[J]. Advanced Materials, 2017, 29(12):1604920.
[51] White I M, Cupps J M, Zhang P, et al. Versatile opto-fluidic ring resonator lasers with ultra-low threshold[J]. Optics Express, 2007, 15(23):15523-15530.
[52] Sun Y, Liu J, Frye-Mason G, et al. Optofluidic ring resonator sensors for rapid DNT vapor detection[J]. Analyst, 2009, 134(7):1386-1391.
[53] White I M, Oveys H, Fan X, et al. Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides[J]. Applied Physics Letters, 2006, 89(19):191106.
[54] Lee W, Luo Y, Zhu Q, et al. Versatile optofluidic ring resonator lasers based on microdroplets[J]. Optics Express, 2011, 19(20):19668-19674.
[55] Testa G, Persichetti G, Bernini R. Liquid core ARROW wveguides:A promising photonic structure for integrated optofluidic microsensors[J]. Micromachines, 2016, 7(3):47.
[56] Campopiano S, Bernini R, Zeni L, et al. Microfluidic sensor based on integrated optical hollow waveguides[J]. Optics Letters, 2004, 29(16):1894-1896.
[57] Bernini R, Minardo A. Integrated silicon optical sensors based on hollow core waveguide[J]. Proceedings of SPIE:The International Society for Optical Engineering, 2007, 6477:647714-647714-14.
[58] Bernini R, Nuccio E D, Brescia F, et al. Development and characterization of an integrated silicon micro flow cytometer[J]. Analytical & Bioanalytical Chemistry, 2006, 386(5):1267-1272.
[59] Yin D, Barber J P, Hawkins A R, et al. Highly efficient fluorescence detection in picoliter volume liquid-core waveguides[J]. Applied Physics Letters, 2005, 87(21):211111.
[60] Ozcelik D, Parks J W, Wall T A, et al. Optofluidic wavelength division multiplexing for single-virus detection[J]. Proceedings of the National Academy of Science, 2015, 112(42):12933-12937.
[61] Lapsley M I, Chiang I K, Zheng Y B, et al. A single-layer, planar, optofluidic Mach-Zehnder interferometer for labelfree detection[J]. Lab on a Chip, 2011, 11(10):1795-1800.
[62] Perumal M, Raju K G R. Approximate convection-diffusion equations[J]. Journal of Hydrologic Engineering, 1999, 4(2):160-164.
[63] Liang L, Zuo Y F, Wu W, et al. Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids[J]. Lab on a Chip, 2016, 16(16):3007-3014.
[64] Mao X, Nawaz A A, Lin S C, et al. An integrated, multiparametric flow cytometry chip using "microfluidic drifting" based three-dimensional hydrodynamic focusing[J]. Biomicrofluidics, 2012, 6(2):24113-241139.
[65] Lee K H, Su Y D, Chen S J, et al. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay[J]. Biosensors & Bioelectronics, 2008, 23(4):466-472.
[66] Zhang D, Lu Y, Jiang J, et al. Nanoplasmonic biosensor:Coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays[J]. Biosensors & Bioelectronics, 2015, 67:237-242.
[67] Barik A, Otto L M, Yoo D, et al. Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays[J]. Nano Letters, 2014, 14(4):2006-2012.
[68] Luo Y, Yu F, Zare R N. Microfluidic device for immunoassays based on surface plasmon resonance imaging[J]. Lab on a Chip, 2008, 8(5):694-700.