Exclusive

Optofluidic sensors and their applications

  • ZHU Xiaoqiang ,
  • LIANG Li ,
  • SHI Yang ,
  • YANG Yi
Expand
  • School of Physics and Technology, Wuhan University, Wuhan 430072, China

Received date: 2018-07-01

  Revised date: 2018-08-03

  Online published: 2018-08-29

Abstract

Based on the optofluidic technology, many kinds of high performance optofluidic sensors can be fabricated by different designs. The optofluidics sensors can be divided into four categories according to their structures. The first two categories are the optofluidic sensors based on the photonic crystal cavity and the whispering gallery mode. When the fluids flow through the cavities of the sensors, the couplemode will change because of the changed refractive index by the fluids, and the responding light signals will change as well. The third category optofluidic sensors are based on the optical waveguide. The fluids will interact with the evanescent field produced by the total reflection of the light in the optical waveguide, leading to the change of the responding light signals. The fourth category optofluidic sensors are based on the surface plasmon resonance. The sensors are very sensitive to the refractive index of the metal surface, and the refractive index changed by the fluids will shift the resonance peak. The optofluidic sensors are very sensitive to the changing of the refractive index, with high sensitivity and accuracy, meanwhile, the optofluidic system enjoys the advantages of low-cost, miniaturization and simple structure. As the detectors are approaching the microcosmic scale, the optofluidic sensors will play an important role in the detection and biochemical analysis area.

Cite this article

ZHU Xiaoqiang , LIANG Li , SHI Yang , YANG Yi . Optofluidic sensors and their applications[J]. Science & Technology Review, 2018 , 36(16) : 20 -28 . DOI: 10.3981/j.issn.1000-7857.2018.16.002

References

[1] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 2006, 442(7101):381-386.
[2] Monat C, Domachuk P, Eggleton B J. Integrated optofluidics:A new river of light[J]. Nature Photonics, 2007, 1(2):106-114.
[3] Horowitz V R, Awschalom D D, Pennathur S. Optofluidics:Field or technique[J]. Lab on a Chip, 2008, 8(11):1856-1863.
[4] Erickson D, Sinton D, Psaltis D. Optofluidics for energy applications[J]. Nature Photonics, 2011, 5(10):583-590.
[5] Bao B, Melo L, Davies B, et al. Detecting supercritical CO2 in brine at sequestration pressure with an optical fiber sensor[J]. Environmental Science & Technology, 2013, 47(1):306-313.
[6] Liu P Y, Chin L K, Ser W, et al. An optofluidic imaging system to measure the biophysical signature of single waterborne bacteria[J]. Lab on a Chip, 2014, 14(21):4237-4243.
[7] Liu P Y, Chin L K, Ser W, et al. Cell refractive index for cell biology and disease diagnosis:Past, present and future[J]. Lab on a Chip, 2016, 16(4):634-644.
[8] Zhu J M, Shi Y, Zhu X Q, et al. Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator[J]. Lab on A Chip, 2017, 17(23):4025-4030.
[9] Shi Y, Zhu X Q, Liang L, et al. Tunable focusing properties using optofluidic Fresnel zone plates[J]. Lab on a Chip, 2016, 16(23):4554-4559.
[10] Yang Y, Liu A Q, Chin L K, et al. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation[J]. Nature Communications, 2012, 3(48):651.
[11] Zhao H T, Yang Y, Chin L K, et al. Optofluidic lens with low spherical and low field curvature aberrations[J]. Lab on a Chip, 2016, 16(9):1617-1624.
[12] Zhu X, Liang L, Zuo Y, et al. Tunable visible cloaking using liquid diffusion[J]. Laser & Photonics Reviews, 2017, 11(6):1700066.
[13] Liu H L, Liang L, Zhu X Q, et al. Tunable transformation optical waveguide bends in liquid[J]. Optica, 2017, 4(8):839-846.
[14] Li L, Zhu X Q, Liang L, et al. Switchable 3D optofluidic Ybranch waveguides tuned by Dean flows[J]. Scientific Reports, 2016, 6:38338.
[15] Roquescarmes T, Gigante A, Commenge J M, et al. Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting[J]. Langmuir, 2009, 25(21):12771-12779.
[16] Yang Y, Chin L K, Tsai J M, et al. Transformation optofluidics for large-angle light bending and tuning[J]. Lab on a Chip, 2012, 12(19):3785-3790.
[17] Hashimoto M, Mayers B, Garstecki P, et al. Flowing lattices of bubbles as tunable, self-assembled diffraction gratings[J]. Small, 2010, 2(11):1292-1298.
[18] Wu W, Zhu X, Zuo Y, et al. Precise sorting of gold nanoparticles in flowing system[J]. 2016. 3(12):2497-2504.
[19] Croningolomb M, Omenetto F, Eggleton B J. Applications of optical tweezers to optofluidics[J]. Optofluidics, 2006, 6329:63290B.
[20] Liu H L, Shi Y, Liang L, et al. A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments[J]. Lab on a Chip, 2017, 17(7):1280-1286.
[21] Cho H, Kim H Y, Kang J Y, et al. Capillary passive valve in microfluidic systems[J]. 2004, 1:263-266.
[22] Selvaganapathy P, Carlen E T, Mastrangelo C H. Electrothermally actuated inline microfluidic valve[J]. Sensors & Actuators A:Physical, 2003, 104(3):275-282.
[23] Kumar A, Rajesh R, Singhal G, et al. Analysis of various optical pumping schemes for liquid oxygen lasers[J]. Applied Physics B, 2007, 89(2/3):385-394.
[24] Xin Z. Soild and liquid Xe-129 NMR signals enhanced by spin-exchange optical pumping under flow[J]. Acta Physica Sinica, 2002, 51(10):2223-2224.
[25] Fan X, White I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 2011, 5(10):591-597.
[26] Zhang Y N, Zhao Y, Zhou T, et al. Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities[J]. Lab on a Chip, 2017, 18(4):57-74.
[27] Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic crystals:Molding the flow of light[M]. Princeton:Princeton University Press, 2008, 3(6):38-47.
[28] Nair R V, Vijaya R. Photonic crystal sensors:An overview[J]. Progress in Quantum Electronics, 2010, 34(3):89-134.
[29] Mortensen N A, Xiao S, Pedersen J. Liquid-infiltrated photonic crystals:Enhanced light-matter interactions for lab-on-achip applications[J]. Microfluidics & Nanofluidics, 2008, 4(1/2):117-127.
[30] Sünner T, Stichel T, Kwon S H, et al. Photonic crystal cavity based gas sensor[J]. Applied Physics Letters, 2008, 92(26):2486.
[31] Zhang H, Jágerská J, Thomas N L, et al. Refractive index sensing with an air-slot photonic crystal nanocavity[J]. Optics Letters, 2010, 35(15):2523-2525.
[32] Li K, Li J, Song Y, et al. L-n slot photonic crystal microcavity for refractive index gas sensing[J]. IEEE Photonics Journal, 2014, 6(5):1-9.
[33] Zhang Y N, Zhao Y, Wang Q. Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity[J]. Sensors & Actuators B:Chemical, 2015, 209(209):431-437.
[34] Falco A D, Ofaolain L, Krauss T F. Chemical sensing in slotted photonic crystal heterostructure cavities[J]. Applied Physics Letters, 2009, 94(6):063503.
[35] Lai W C, Chakravarty S, Zou Y, et al. Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors[J]. Applied Physics Letters, 2013, 102(4):041111.
[36] Zhou J, Tian H, Yang D, et al. Integration of high transmittance photonic crystal H2 nanocavity and broadband W1 waveguide for biosensing applications based on Silicon-on-Insulator substrate[J]. Optics Communications, 2014, 330(330):175-183.
[37] Zhang Y N, Zhao Y, Hu H F. Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature[J]. Sensors & Actuators B:Chemical, 2015, 216:563-571.
[38] Domachuk P, Littler I C M, Croningolomb M, et al. Compact resonant integrated microfluidic refractometer[J]. Applied Physics Letters, 2006, 88(9):330A.
[39] He Z, Tian F, Zhu Y, et al. Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor[J]. Biosensors & Bioelectronics, 2011, 26(12):4774-4778.
[40] Wu C, Tse M L, Liu Z, et al. In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer[J]. Analyst, 2014, 139(21):5422-5429.
[41] Zhang N, Humbert G, Wu Z, et al. In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber[J]. Optics Express, 2016, 24(24):27674.
[42] Suter J D, Fan X. Overview of the optofluidic ring resonator:A versatile platform for label-free biological and chemical sensing[C]//International Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway NJ:IEEE:IEEE, 2009:1042.
[43] Li M, Wu X, Liu L, et al. Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection[J]. Analytical Chemistry, 2013, 85(19):9328-9332.
[44] Luo Y, Chen X, Xu M, et al. Optofluidic glucose detection by capillary-based ring resonators[J]. Optics & Laser Technology, 2014, 56(1):12-14.
[45] Scholten K, Fan X, Zellers E T. A microfabricated optofluidic ring resonator for sensitive, high-speed detection of volatile organic compounds[J]. Lab on a Chip, 2014, 14(19):3873-3880.
[46] Fan X, White I M, Zhu H, et al. Overview of novel integrated optical ring resonator bio/chemical sensors[C]//Laser Resonators and Beam Control IX. Bellingham WA:International Society for Optics and Photonics, 2007, 6452:64520M.
[47] Zhu H, White I M, Suter J D, et al. Opto-fluidic micro-ring resonator for sensitive label-free viral detection[J]. Analyst, 2008, 133(3):356-360.
[48] Suter J D, Howard D J, Shi H, et al. Label-free DNA methylation analysis using opto-fluidic ring resonators[J]. Biosensors & Bioelectronics, 2010, 26(3):1016-1020.
[49] Zhu H, White I M, Suter J D, et al. Phage-based label-free biomolecule detection in an opto-fluidic ring resonator[J]. Biosensors & Bioelectronics, 2008, 24(3):461-466.
[50] Zhi Y, Yu X, Gong Q, et al. Single nanoparticle detection using optical microcavities[J]. Advanced Materials, 2017, 29(12):1604920.
[51] White I M, Cupps J M, Zhang P, et al. Versatile opto-fluidic ring resonator lasers with ultra-low threshold[J]. Optics Express, 2007, 15(23):15523-15530.
[52] Sun Y, Liu J, Frye-Mason G, et al. Optofluidic ring resonator sensors for rapid DNT vapor detection[J]. Analyst, 2009, 134(7):1386-1391.
[53] White I M, Oveys H, Fan X, et al. Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides[J]. Applied Physics Letters, 2006, 89(19):191106.
[54] Lee W, Luo Y, Zhu Q, et al. Versatile optofluidic ring resonator lasers based on microdroplets[J]. Optics Express, 2011, 19(20):19668-19674.
[55] Testa G, Persichetti G, Bernini R. Liquid core ARROW wveguides:A promising photonic structure for integrated optofluidic microsensors[J]. Micromachines, 2016, 7(3):47.
[56] Campopiano S, Bernini R, Zeni L, et al. Microfluidic sensor based on integrated optical hollow waveguides[J]. Optics Letters, 2004, 29(16):1894-1896.
[57] Bernini R, Minardo A. Integrated silicon optical sensors based on hollow core waveguide[J]. Proceedings of SPIE:The International Society for Optical Engineering, 2007, 6477:647714-647714-14.
[58] Bernini R, Nuccio E D, Brescia F, et al. Development and characterization of an integrated silicon micro flow cytometer[J]. Analytical & Bioanalytical Chemistry, 2006, 386(5):1267-1272.
[59] Yin D, Barber J P, Hawkins A R, et al. Highly efficient fluorescence detection in picoliter volume liquid-core waveguides[J]. Applied Physics Letters, 2005, 87(21):211111.
[60] Ozcelik D, Parks J W, Wall T A, et al. Optofluidic wavelength division multiplexing for single-virus detection[J]. Proceedings of the National Academy of Science, 2015, 112(42):12933-12937.
[61] Lapsley M I, Chiang I K, Zheng Y B, et al. A single-layer, planar, optofluidic Mach-Zehnder interferometer for labelfree detection[J]. Lab on a Chip, 2011, 11(10):1795-1800.
[62] Perumal M, Raju K G R. Approximate convection-diffusion equations[J]. Journal of Hydrologic Engineering, 1999, 4(2):160-164.
[63] Liang L, Zuo Y F, Wu W, et al. Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids[J]. Lab on a Chip, 2016, 16(16):3007-3014.
[64] Mao X, Nawaz A A, Lin S C, et al. An integrated, multiparametric flow cytometry chip using "microfluidic drifting" based three-dimensional hydrodynamic focusing[J]. Biomicrofluidics, 2012, 6(2):24113-241139.
[65] Lee K H, Su Y D, Chen S J, et al. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay[J]. Biosensors & Bioelectronics, 2008, 23(4):466-472.
[66] Zhang D, Lu Y, Jiang J, et al. Nanoplasmonic biosensor:Coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays[J]. Biosensors & Bioelectronics, 2015, 67:237-242.
[67] Barik A, Otto L M, Yoo D, et al. Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays[J]. Nano Letters, 2014, 14(4):2006-2012.
[68] Luo Y, Yu F, Zare R N. Microfluidic device for immunoassays based on surface plasmon resonance imaging[J]. Lab on a Chip, 2008, 8(5):694-700.
Outlines

/