Exclusive

Microfluidic chips for single-cell trapping

  • WU Chunhui ,
  • JIANG Youwei ,
  • CHENG Xin
Expand
  • 1. Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
    2. SUSTech Academy for Advanced Interdisciplinary Studies, Shenzhen 518055, China

Received date: 2018-05-31

  Revised date: 2018-07-29

  Online published: 2018-08-29

Abstract

In recent years, the application of the microfluidics in the single cell analysis has attracted more and more attention. The singlecell trapping is the basic and key component for the analysis at the single-cell level. The microfluidic chips usually have single-cell matched microstructures and could achieve the control of extremely small liquid volumes at the nanoliter and picoliter scale. Thus, the microfluidic chips are particularly suitable for the specific or high-throughput single-cell trapping. Moreover, the components for the posttrapping analysis of single cells could be integrated on the chip to build a high-efficiency and low-cost microfluidic single-cell analysis platform. This paper reviews and compares several microfluidic single-cell trapping methods, including hydrodynamic, optical, electrical, magnetic, and acoustic techniques. Future research in the single-cell trapping and analysis on the microfluidic chips is also discussed.

Cite this article

WU Chunhui , JIANG Youwei , CHENG Xin . Microfluidic chips for single-cell trapping[J]. Science & Technology Review, 2018 , 36(16) : 39 -45 . DOI: 10.3981/j.issn.1000-7857.2018.16.004

References

[1] Voloshin S A, Kaprelyants A S. Cell-cell interactions in bacterial populations[J]. Biochemistry Biokhimiia, 2004, 69(11):1268-1275.
[2] Neurohr C, Behr J. Diagnosis and therapy of interstitial lung diseases[J]. Deutsche Medizinische Wochenschrift, 2009, 134(11):524-529.
[3] Erdmann J. Single-cell technologies highlight heterogeneity among cells[J]. Chemistry & Biology, 2012, 19(7):785-786.
[4] Marte B. Tumour heterogeneity[J]. Nature, 2013, 501(7467):327.
[5] Sweedler J V, Arriaga E A. Single cell analysis[J]. Analytical & Bioanalytical Chemistry, 2007, 387(1):1-2.
[6] Kruth H S. Flow cytometry:Rapid biochemical analysis of single cells[J]. Analytical Biochemistry, 1982, 125(2):225-242.
[7] Boeck G. Current status of flow cytometry in cell and molecular biology[J]. International Review of Cytology, 2001, 204(11):239-298.
[8] Perlman Z E, Altschuler S J. Multidimensional drug profiling by automated microscopy[J]. Science, 2004, 306(5699):1194-1198.
[9] Matioli G T, Niewisch H B. Electrophoresis of hemoglobin in single erythrocytes[J]. Science, 1965, 150(3705):1824-1826.
[10] Arcibal I G, Santillo M F, Ewing A G. Recent advances in capillary electrophoretic analysis of individual cells[J]. Analytical & Bioanalytical Chemistry, 2007, 387(1):51-57.
[11] Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems:A novel concept for chemical sensing[J]. Sensors & Actuators B Chemical, 1990, 1(1):244-248.
[12] Feng X, Du W, Luo Q, et al. Microfluidic chip:Next-generation platform for systems biology[J]. Analytica Chimica Acta, 2009, 650(1):83-97.
[13] Yi C, Li C W, Ji S, et al. Microfluidics technology for manipulation and analysis of biological cells[J]. Analytica Chimica Acta, 2006, 560(1):1-23.
[14] Di Carlo D, Aghdam N, Lee L P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays[J]. Analytical Chemistry, 2006, 78(14):4925-4930.
[15] Di Carlo D, Wu L Y, Lee L P. Dynamic single cell culture array[J]. Lab on a Chip, 2006, 6(11):1445-1449.
[16] Wlodkowic D, Faley S, Zagnoni M, et al. Microfluidic single cell array cytometry for the analysis of tumour apoptosis[J].Analytical Chemistry, 2009, 81(13):5517-5523.
[17] Skelley A M, Kirak O, Suh H, et al. Microfluidic control of cell pairing and fusion[J]. Nature Methods, 2009, 6(2):147-152.
[18] Deutsch M, Deutsch A, Shirihai O, et al. A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells[J]. Lab on a Chip, 2006, 6(8):995-1000.
[19] Komarova G A, Starodubtsev S G, Khokhlov A R. Investigation of physical-chemical properties of agarose hydrogels with embedded emulsions[J]. Journal of Physical Chemistry B, 2009, 113(45):14849-14853.
[20] Hu Y D, Azadi G, Ardekani A M. Microfluidic fabrication of shape-tunable alginate microgels:Effect of size and impact velocity[J]. Carbohydrate Polymers, 2015, 120:38-45.
[21] Pan J, Stephenson A L, Kazamia E, et al. Quantitative tracking of the growth of individual algal cells in microdroplet compartments[J]. Integrative Biology, 2011, 3(10):1043-1051.
[22] Richard N, Yong Z, Joe S, et al. Single-cell multiplex gene detection and sequencing with microfluidically generated agarose emulsions.[J]. Angewandte Chemie International Edition, 2011, 50(2):390-395.
[23] Ashkin A, Dziedzic J M, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams[J]. Nature, 1987, 330(6150):769-771.
[24] Wang X L, Gou X, Chen S X, et al. Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition[J]. Journal of Micromechanics & Microengineering, 2013, 23(7):075006.
[25] Chen S, Wang X, Cheng J, et al. Artificially induced cell fusion by optical tweezers manipulation[C]//13th IEEE International Conference on Nanotechnology. Piscataway NJ:IEEE, 2013:333-336.
[26] Pohl H A. The Motion and Precipitation of Suspensoids in Divergent Electric Fields[J]. Journal of Applied Physics, 1951, 22(7):869-871.
[27] Zhang C, Khoshmanesh K, Mitchell A, et al. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems[J]. Analytical & Bioanalytical Chemistry, 2010, 396(1):401-420.
[28] Hunt T P, Westervelt R M. Dielectrophoresis tweezers for single cell manipulation[J]. Biomedical Microdevices, 2006, 8(3):227-230.
[29] Voldman J, Gray M L, Toner M, et al. A MicrofabricationBased Dynamic Array Cytometer[J]. Analytical Chemistry, 2002, 74(16):3984-3990.
[30] Wu C, Chen R, Liu Y, et al. A planar dielectrophoresisbased chip for high-throughput cell pairing[J]. Lab on a Chip, 2017, 17(23):4008-4014.
[31] Petersson F, Nilsson A, Holm C, et al. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels[J]. Analyst, 2004, 129(10):938-943.
[32] Guo F, Mao Z, Chen Y, et al. Three-dimensional manipulation of single cells using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(6):1522-1527.
[33] Zhao L B, Pan L, Zhang K, et al. Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation[J]. Lab on A Chip, 2009, 9(20):2981-2986.
[34] Nisisako T, Torii T, Takahashi T, et al. Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system[J]. Advanced Materials, 2006, 18(9):1152-1156.
[35] Kang J H, Krause S, Tobin H, et al. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells[J]. Lab on a Chip, 2012, 12(12):2175-2181.
Outlines

/