[1] 林柄承, 秦建华. 图解微流控芯片实验室[M]. 北京:科学出版社, 2008. Lin Bingcheng, Qin Jianhua. Illustration of lab on a microflow chip[M]. Beijing:Science Press, 2008.
[2] Ugaz V M. PCR in integrated microfluidic systems[M]//Integrated Biochips for DNA Analysis. New York:Springer, 2007:90-106.
[3] Manage D P, Morrissey Y C, Stickel A J, et al. On-chip PCR amplification of genomic and viral templates in unprocessed whole blood[J]. Microfluidics & Nanofluidics, 2011, 10(3):697-702.
[4] Wirth T. Microreactors in organic synthesis and catalysis[M]. Germany:Wiley-VCH Verlag, 2008.
[5] KöHler J M, Kirner T, Wagner J, et al. Nanoparticle reactions on chip[J]. Nato Science, 2004, 152:39-50.
[6] Köhler J M, Cahill B P. Micro-segmented flow:Applications in chemistry and biology[M]. New York:Springer, 2014.
[7] Zhang J S, Wang K, Zhang C Y, et al. Safety evaluating of Beckmann rearrangement of cyclohexanone oxime in microreactors using inherently safer design concept[J]. Chemical Engineering & Processing Process Intensification, 2016, 110:44-51.
[8] Fei Y, Sun B, Zhang F, et al. Inherently safer reactors and procedures to prevent reaction runaway[J]. Chinese Journal of Chemical Engineering, 2018, 26:1252-1283.
[9] Rahman M T, Wirth T. Safe use of hazardous chemicals in flow[J]. Topics in Heterocyclic Chemistry, 201856:343-374.
[10] Singh R, Lee H J, Singh A K, et al. Recent advances for serial processes of hazardous chemicals in fully integrated microfluidic systems[J]. Korean Journal of Chemical Engineering, 2016, 33(8):2253-2267.
[11] 吴腾芳. 爆炸物识别图册[M]. 北京:国防工业出版社, 2007. Wu Tengfang. Explosives recognition atlas[M]. Beijing:National Defense Industry Press, 2007.
[12] 黄寅生. 炸药理论[M]. 北京:兵器工业出版社, 2009:125. Huang Yinsheng. Explosive theory[M]. Beijing:Ordnance Industry Publishing House, 2009:125.
[13] Liu Y, Jiang X. Why microfluidics? Merits and trends in chemical synthesis[J]. Lab on a Chip, 2017, 17(23):3960-3978.
[14] Su Y F, Kim H, Kovenklioglu S, et al. Continuous nanoparticle production by microfluidic-based emulsion, mixing and crystallization[J]. Journal of Solid State Chemistry, 2007, 180(9):2625-2629.
[15] Misuk V, Mai A, Zhao Y, et al. Active mixing inside double emulsion segments in continuous flow[J]. Journal of Flow Chemistry, 2015, 5(2):101-109.
[16] Li S, Roy A, Lichtenberg H, et al. Local structure of ZnO micro flowers and nanoparticles obtained by micro-segmented flow synthesis[J]. Chemphyschem, 2012, 13(6):1557.
[17] Budden M, Schneider S, Groß G A, et al. Microfluidic encoding:Generation of arbitrary droplet sequences by electrical switching in microchannels[J]. Sensors & Actuators A Physical, 2013, 189(189):288-297.
[18] Köhler J M, März A, Popp J, et al. Polyacrylamid/silver composite particles produced via microfluidic photopolymerization for single particle-based SERS microsensorics[J]. Analytical Chemistry, 2013, 85(1):313.
[19] Chang Z, Serra C A, Bouquey M, et al. Multiscale materials from microcontinuous-flow synthesis:ZnO and Au nanoparticle-filled uniform and homogeneous polymer microbeads[J]. Nanotechnology, 2009, 21(1):015605.
[20] Li S, Gross G A, Günther P M, et al. Hydrothermal micro continuous-flow synthesis of spherical, cylinder-, star-and flower-like ZnO microparticles[J]. Chemical Engineering Journal, 2011, 167(2/3):681-687.
[21] Li S, Roy A, Lichtenberg H, et al. Local Structure of ZnO micro flowers and nanoparticles obtained by micro-segmented flow synthesis[J]. Chemphyschem, 2012, 13(6):1557-1561.
[22] Hafermann L, Köhler J M. Small gold nanoparticles formed by rapid photochemical flow-through synthesis using microfluid segment technique[J]. Journal of Nanoparticle Research, 2015, 17(2):1-8.
[23] Knauer A, Thete A, Li S, et al. Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis[J]. Chemical Engineering Journal, 2011, 166(3):1164-1169.
[24] Odetade D, Vladisavljevic G T. Microfluidic fabrication of hydrocortisone nanocrystals coated with polymeric stabilisers[J]. Micromachines, 2016, 7(12):236.
[25] Jongen N, Donnet M, Bowen P, et al. Development of a Continuous segmented flow tubular reactor and the "scale-out" concept-in search of perfect powders[J]. Chemical Engineering & Technology, 2010, 26(3):303-305.
[26] Chen D L, Gerdts C J, Ismagilov R F. Using microfluidics to observe the effect of mixing on nucleation of protein crystals[J]. Journal of the American Chemical Society, 2005, 127(27):9672-9673.
[27] Li L, Mustafi D, Fu Q, et al. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51):19243.
[28] Duraiswamy S, Khan S A. Dual-stage continuous-flow seedless microfluidic synthesis of anisotropic gold nanocrystals[J]. Particle & Particle Systems Characterization, 2014, 31(4):429-432.
[29] Mashaghi S, Abbaspourrad A, Weitz D A, et al. Droplet microfluidics:A tool for biology, chemistry and nanotechnology[J]. Trac Trends in Analytical Chemistry, 2016, 82:118-125.
[30] Köhler J M, Li S, Knauer A. Why is micro segmented flow particularly promising for the synthesis of nanomaterials?[J]. Chemical Engineering & Technology, 2013, 36(6):887-899.
[31] Inoue T, Ohtaki K, Murakami S, et al. Direct synthesis of hydrogen peroxide based on microreactor technology[J]. Fuel Processing Technology, 2013, 108:8-11.
[32] Paunovic V, Ordomsky V, D'Angelo M F N, et al. Direct synthesis of hydrogen peroxide over Au-Pd catalyst in a wallcoated microchannel[J]. Journal of Catalysis, 2014, 309(309):325-332.
[33] Roberge D M, Noti C, Irle E, et al. Control of hazardous processes in flow:Synthesis of 2-nitroethanol[J]. Journal of Flow Chemistry, 2013, 4(1):26-34.
[34] Zuckerman N B, Shusteff M, Pagoria P F, et al. Microreactor flow synthesis of the secondary high explosive 2,6-Diamino-3, 5-dinitropyrazine-1-oxide (LLM-105)[J]. Journal of Flow Chemistry, 2015, 5(3):178-182.
[35] Delville M M E, Nieuwland P J, Janssen P, et al. Continuous flow azide formation:Optimization and scale-up[J]. Chemical Engineering Journal, 2011, 167(2/3):556-559.
[36] 刘换敏, 李兆乾, 王彦君, 等. 微流控技术制备球形发射药及其表征[J]. 含能材料, 2017, 25(9):717-721. Liu Huanmin, Li Zhaoqian, Wang Yanjun, et al. Preparation and characterization of spherical propellant by microfluidic technology[J]. Chinese Journal of Energetic Materials, 2017, 25(9):717-721.
[37] 房玉强. 基于微流控芯片的微混合技术研究[D]. 南京:南京理工大学, 2012. Fang Yuqiang. Micro mixing technology based on microfluidic chip[D]. Nanjing:Nanjing University of Science and Technology, 2012.
[38] Fang Y, Ye Y, Shen R, et al. Mixing enhancement by simple periodic geometric features in microchannels[J]. Chemical Engineering Journal, 2012, 187(2):306-310.
[39] 朱朋, 沈瑞琪, 叶迎华, 等. 嵌段流合成三硝基间苯二酚铅[C]//第十六届中国科协年会论文集. 北京:中国科学技术协会, 2014:1-5. Zhu Peng, Shen Ruiqi, Ye Yinghua, et al. Synthesis of three nitro resorcinol lead by block flow[C]//Proceeding of the 16th Annual Meeting of China Association for Science and Technology, 2014:1-5.
[40] Zhou N, Zhu P, Rong Y, et al. Microfluidic synthesis of sizecontrolled and morphologically homogeneous lead trinitroresorcinate produced by segmented flow[J]. Propellants Explosives Pyrotechnics, 2016, 41(5):899-905.
[41] 朱莹. 嵌段流合成三硝基间苯二酚铅技术研究[D]. 南京:南京理工大学, 2014. Zhu Ying. Study on synthesis of trinitroresorcinol lead by block flow[D]. Nanjing:Nanjing University of Science and Technology, 2012.
[42] 周楠. 典型硝基酚类起爆药的嵌段流合成及结晶过程研究[D]. 南京:南京理工大学. 2016. Zhou Nan. Study on block flow synthesis and crystallization process of typical nitrophenol initiatives[D]. Nanjing:Nanjing University of Science and Technology, 2016.
[43] Zhao S, Yan F, Zhu P, et al. Micro-segmented flow technology applied for synthesis and shape control of lead styphnate micro-particles[J]. Propellants Explosives Pyrotechnics, 2017, 43(3):286-293.