Exclusive: Intelligent Manufacturing

Parallel manufacturing for textile, footwear and garment industries

  • LI Lijun ,
  • WANG Xiao ,
  • SHANG Xiuqin
Expand
  • 1. School of Automation, Southeast University, Nanjing 210096, China;
    2. Ningbo Cixing Co., Ltd., Ningbo 315336, China;
    3. The State Key Laboratory of Management and Control for Complex Systems;Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;
    4. Qingdao Academy of Intelligent Industries, Qingdao 266109, China;
    5. Beijing Engineering Research Center of Intelligent Systems and Technology;Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2018-07-20

  Revised date: 2018-11-05

  Online published: 2018-11-27

Abstract

This paper concerns how to apply machine vision and virtual-reality technologies into industrial robots and Internet of Things and to combine big data and cloud computing to construct a parallel manufacturing infrastructure. A worldwide flexible supply chain of footwear and garment industries is introduced to demonstrate the workflow and efficiency of parallel manufacturing. Firstly, a virtual factory is constructed in the cloud, where management policies and decision control data are synchronized with the data generated by highly automated production equipment in the workshop. The virtual factory, executing in parallel with the physical one, supplies tested and optimized decisions and guides the production process in physical factories. To provide worldwide service, a global and distributed cooperative production management platform is built based on the industrial Internet of Things, namely CIXING's cloud manufacturing platform. It operates with low production cost, high work efficiency and reduced labor numbers. It has also been listed as one of the national intelligent manufacturing pilot demonstration project by the Chinese Ministry of Industry and Information Technology.

Cite this article

LI Lijun , WANG Xiao , SHANG Xiuqin . Parallel manufacturing for textile, footwear and garment industries[J]. Science & Technology Review, 2018 , 36(21) : 48 -55 . DOI: 10.3981/j.issn.1000-7857.2018.21.005

References

[1] 周佳军, 姚锡凡, 刘敏, 等. 几种新兴智能制造模式研究评述[J]. 计算机集成制造系统, 2017, 23(3):624-639. Zhou Jiajun, Yao Xifan, Liu Min, et al. State-of-art review on new emerging intelligent manufacturing paradigms[J]. Computer Integrated Manufacturing Systems, 2017, 23(3):624-639.
[2] 张益, 冯毅萍, 荣冈. 智慧工厂的参考模型关键技术[J]. 计算机集成制造系统, 2016, 22(1):1-12. Zhang Yi, Feng Yiping, Rong Gang. Reference model and key technologies of smart factory[J]. Computer Integrated Manufacturing Systems, 2016, 22(1):1-12.
[3] 张祖国. 面向社会化协同的智能制造体系结构[J]. 计算机集成制造系统, 2016, 22(7):1779-1788. Zhang Zuguo. System architecture for SNS-based collaborative intelligent manufacturing[J]. Computer Integrated Manufacturing Systems, 2016, 22(7):1779-1788.
[4] 肖莹莹, 李伯虎, 侯宝存, 等. 智慧制造云中供应链管理的计划调度技术综述[J]. 计算机集成制造系统, 2016, 22(7):1619-1635. Xiao Yingying, Li Bohu, Hou Baocun, et al. Planning and scheduling technology review supply chain management in smart manufacturing cloud[J]. Computer Integrated Manufacturing Systems, 2016, 22(7):1619-1635.
[5] 吕佑龙, 张洁. 基于大数据的智慧工厂技术框架[J]. 计算机集成制造系统, 2016, 22(11):2691-2697. Lü Youlong, Zhang Jie. Big-data-based technical framework of smart factory[J]. Computer Integrated Manufacturing Systems, 2016, 22(11):2691-2697.
[6] 邓建玲, 王飞跃, 陈耀斌, 等. 从工业4.0到能源5.0:智能能源系统的概念、内涵及体系框架[J]. 自动化学报, 2015, 41(12):2003-2016. Deng Jianling, Wang Feiyue, Chen Yaobin, et al. From industies 4.0 to energy 5.0:Concept and framework of intelligent energy systems[J]. Acta Automatica Sinica, 2015, 41(12):2003-2016.
[7] 王飞跃, 孙奇, 江国进, 等. 核能5.0:智能时代的核电工业新形态与体系架构[J]. 自动化学报, 2018, 44(5):922-934. Wang Feiyue, Sun Qi, Jiang Guojin, et al. Nuclear energy 5.0:New forms and architectures of nuclear power industry in the intelligent age[J]. Acta Automatica Sinica, 2018, 44(5):922-934.
[8] 贾常艳. 智能制造的未来:迈向平行时代的工业5.0[J]. 电器工业, 2015(2):10. Jia Changyan. The future of intelligent manufacturing:Step to industrial 5.0 in parallel age[J]. China Electrical Equipment Industry, 2015(2):10.
[9] 王飞跃, 张俊. 智联网:概念、问题和平台[J]. 自动化学报, 2017, 43(12):2061-2070. Wang Feiyue, Zhang Jun. Smart network:Concepts, problems and platforms[J]. Acta Automatica Sinica, 2017, 43(12):2061-2070.
[10] 桂卫华, 刘晓颖. 基于人工智能方法的复杂过程故障诊断技术[J]. 控制工程, 2002, 9(4):1-6. Gui Weihua, Liu Xiaoying. Fault diagnosis technologies based on artificial intelligence forconples process[J]. Control Engineering of China, 2002, 9(4):1-6.
[11] 王飞跃. 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004, 19(5):485-489. Wang Feiyue. Parallel system methods for management and control of complex systems[J]. Control and Decision, 2004, 19(5):485-489.
[12] 王飞跃. 计算实验方法与复杂系统行为分析和决策评估[J]. 系统仿真学报, 2004, 16(5):893-897. Wang Feiyue. Computaional experiments for behavior analysis and decision evaluation of complex systems[J]. Journal of System Simulation, 2004, 16(5):893-897.
[13] 王飞跃. 人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论[J]. 复杂系统与复杂性科学, 2004, 1(4):25-35. Wang Feiyue. Artificial societies, computational experiments and parallel systems:A discussion on computational theory of complex social-economic systems[J]. Complex System and Complexity Science, 2004, 1(4):25-35.
[14] 王飞跃. 平行控制:数据驱动的计算控制方法[J]. 自动化学报, 2013, 39(4):293-302. Wang Feiyue. Parallel control:A method for data-driven and computational control[J]. Acta Automatica Sinica, 2013, 39(4):293-302.
[15] 王飞跃. 软件定义的系统与知识自动化:从牛顿到默顿的平行升华[J]. 自动化学报, 2015, 41(1):293-302. Wang Feiyue. Software-defined systems and knowledge automation:A parallel paradigm shift from Newton to Merton[J]. Acta Automatica Sinica, 2015, 41(1):293-302.
[16] 李力, 林懿伦, 曹东璞, 等. 平行学习——机器学习的一个新型理论框架[J]. 自动化学报, 2017, 43(1):1-8. Li Li, Lin Yilun, Cao Dongpu, et al. Parallel learning:A new framework for machine learning[J]. Acta Automatica Sinica, 2017, 43(1):1-8.
[17] 白天翔, 王帅, 沈震, 等. 平行机器人与平行无人系统:框架、结构、过程、平台及其应用[J]. 自动化学报, 2017, 43(2):161-175. Bai Tianxiang, Wang Shuai, Shen Zhen, et al. Parallel robotics and parallel unmanned systems:Framework, structure, process, platform and applications[J]. Acta Automatica Sinica, 2017, 43(2):161-175.
[18] 王坤峰, 苟超, 王飞跃. 平行视觉:基于ACP的智能视觉计算方法[J]. 自动化学报, 2016, 42(10):1490-1500. Wang Kunfeng, Gou Chao, Wang Feiyue. Parallel vision:An ACP-based approach to intelligent vision computing[J]. Acta Automatica Sinica, 2016, 42(10):1490-1500.
[19] 王飞跃. 机器人的未来发展:从工业自动化到知识自动化[J]. 科技导报, 2015, 33(21):39-44. Wang Feiyue. On future development of robotics:From industrial automation to knowledge automation[J]. Science & Technology Review, 2015, 33(21):39-44.
[20] 袁勇, 王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42(4):481-494. Yuan Yong, Wang Feiyue. Blockchain:The state of the art and future trends[J]. Acta Automatica Sinica, 2016, 42(4):481-494.
[21] 张益, 冯毅萍, 荣冈. 面上智能制造的生产执行系统及其技术转型[J]. 信息与控制, 2017, 464(4):452-461. Zhang Yi, Feng Yiping, Rong Gang. Intelligent manufacturing-oriented technical transformation of manufacturing execution system[J]. Information and Control, 2017, 464(4):452-461.
[22] Wang F Y, Zhang J, Wei Q, Li L. PDP:Parallel dynamic programming[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(1):1-5.
[23] Zhang N, Wang F Y, Zhu F H, et al. DynaCAS:Computational experiments and decision support for ITS[J]. IEEE Intelligent Systems, 2008, 23(6):19-23.
[24] Wang F Y. Parallel control and management for intelligent transportation systems:Concepts, architectures, and applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3):630-638.
[25] Li L, Wen D. Parallel systems for traffic control:A rethinking[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4):1179-1182.
[26] Wang F Y, Wang X, Li L X, et al. Steps toward parallel intelligence[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4):345-348.
[27] Shang X Q, Wang F Y, Xiong G, et al. Social manufacturing for high-end apparel customization[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2):489-500.
[28] Xiong G, Wang F Y, Nyberg T R, et al. From mind to products:Towards social manufacturing and service[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1):47-57.
Outlines

/