Exclusive: Nanobiomedicine

Recent progress in cancer theranostics

  • HUANG Kai ,
  • LIN Jing ,
  • HUANG Peng ,
  • Han Gang ,
  • CHEN Xiaoyuan
Expand
  • 1. Department of Molecular Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China;
    2. Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
    3. National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA

Received date: 2018-08-16

  Revised date: 2018-11-15

  Online published: 2018-12-14

Abstract

Theranostics is a type of emerging biomedical technology that integrates diagnostics with therapeutics, thus possesses significant biomedical impact on various diseases, especially cancer, in terms of fundamental research and clinical applications. A cancer theranostic agent is usually composed of a diagnostic component, which allows for cancer imaging and detection, and a therapeutic component, which allows for cancer therapy. Through the integration of diagnosis and therapy in a single nanoparticle, several novel merits are expected, including accurate localization of tumor area, in situ therapy, and real-time monitoring of therapeutic progress. In this paper, we firstly introduce the development of cancer theranostics and analyze their unique advantages for cancer diagnosis and treatment. We then focuse on the latest progress on the construction of various cancer theranostic agents. In the end, we discusse the challenges and possible future directions of cancer theranostics.

Cite this article

HUANG Kai , LIN Jing , HUANG Peng , Han Gang , CHEN Xiaoyuan . Recent progress in cancer theranostics[J]. Science & Technology Review, 2018 , 36(22) : 12 -26 . DOI: 10.3981/j.issn.1000-7857.2018.22.002

References

[1] Chen W Q, Zheng R S, Baade P D, et al. Cancer statistics in china, 2015[J]. CA:A Cancer Journal for Clinicians, 2016, 66(2):115-132.
[2] Fang J, Nakamura H, Maeda H. The EPR effect:Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect[J]. Advanced Drug Delivery Reviews, 2011, 63(3):136-151.
[3] Wilhelm S, Tavares A J, Dai Q, et al. Analysis of nanoparticle delivery to tumours[J]. Nature Reviews Materials, 2016, 1(5):16014.
[4] Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology:The impact of passive and active targeting in the era of modern cancer biology[J]. Advanced Drug Delivery Reviews, 2014, 66(24):2-25.
[5] Wang S, Huang P, Chen X Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization[J]. Advanced Materials, 2016, 28(34):7340-7364.
[6] Zhan W B, Gedroyc W, Xu X Y. The effect of tumour size on drug transport and uptake in 3-D tumour models reconstructed from magnetic resonance images[J]. PloS One, 2017, 12(2):e0172276.
[7] Lim E K, Kim T, Paik S, et al. Nanomaterials for theranostics:Recent advances and future challenges[J]. Chemical Reviews, 2015, 115(1):327-394.
[8] Chen H M, Zhang W Z, Zhu G Z, et al. Rethinking cancer nanotheranostics[J]. Nature Reviews Materials, 2017, 2:17024.
[9] Karathanasis E, Suryanarayanan S, Balusu S R, et al. Imaging nanoprobe for prediction of outcome of nanoparticle chemotherapy by using mammography[J]. Radiology, 2009, 250(2):398-406.
[10] Hansen A E, Petersen A L, Henriksen J R, et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes[J]. ACS Nano, 2015, 9(7):6985-6995.
[11] Holme Ø, Løberg M, Kalager M, et al. Long-term effectiveness of sigmoidoscopy screening on colorectal cancer incidence and mortality in women and men:A randomized trial[J]. Annals of Internal Medicine, 2018, 168(11):775-782.
[12] Kolarich A, George T J, Hughes S J, et al. Rectal cancer patients younger than 50 years lack a survival benefit from NCCN guideline-directed treatment for stage Ⅱ and Ⅲ disease[J]. Cancer, 2018, 124(17):3510-3519.
[13] Simoni Y, Becht E, Fehlings M, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates[J]. Nature, 2018, 557(7706):575-579.
[14] Miao L, Huang L. Exploring the tumor microenvironment with nanoparticles[J]. Cancer Treatment Research, 2015, 166:193-226.
[15] Minchinton A I, Tannock I F. Drug penetration in solid tumours[J]. Nature Reviews Cancer, 2006, 6(8):583-592.
[16] Manzoor A A, Lindner L H, Landon C D, et al. Overcoming limitations in nanoparticle drug delivery:Triggered, intravascular release to improve drug penetration into tumors[J]. Cancer Research, 2012, 72(21):5566-5575.
[17] Matsumoto Y, Nichols J W, Toh K, et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery[J]. Nature Nanotechnology, 2016, 11(6):533-538.
[18] Kaida S, Cabral H, Kumagai M, et al. Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumor model[J]. Cancer Research, 2010, 70(18):7031-7041.
[19] Ponce A M, Viglianti B L, Yu D, et al. Magnetic resonance imaging of temperature-sensitive liposome release:Drug dose painting and antitumor effects[J]. Journal of the National Cancer Institute, 2007, 99(1):53-63.
[20] Jin C S, Overchuk M, Cui L, et al. Nanoparticle-enabled selective destruction of prostate tumor using MRI-guided focal photothermal therapy[J]. Prostate, 2016, 76(13):1169-1181.
[21] Wang M N, Zhao J Z, Zhang L H, et al. Role of tumor microenvironment in tumorigenesis[J]. Journal of Cancer, 2017, 8(5):761-773.
[22] Fu L H, Qi C, Lin J, et al. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment[J]. Chemical Society Reviews, 2018, 47(17):6454-6472.
[23] van Es S C, Brouwers A H, Mahesh S V K, et al. 89Zr-bevacizumab PET:Potential early indicator of everolimus efficacy in patients with metastatic renal cell carcinoma[J]. Journal of Nuclear Medicine, 2017, 58(6):905-910.
[24] Zhu X J, Feng W, Chang J, et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature[J]. Nature Communications, 2016, 7:10437.
[25] Huang K, Idris N M, Zhang Y. Engineering of lanthanidedoped upconversion nanoparticles for optical encoding[J]. Small, 2015, 12(7):836-852.
[26] Park S M, Aalipour A, Vermesh O, et al. Towards clinically translatable in vivo nanodiagnostics[J]. Nature Reviews Materials, 2017, 2(5):17014.
[27] Fei X N, Gu Y C. Progress in modifications and applications of fluorescent dye probe[J]. Progress in Natural Science, 2009, 19(1):1-7.
[28] Mu J, Lin J, Huang P, et al. Development of endogenous enzyme-responsive nanomaterials for theranostics[J]. Chemical Society Reviews, 2018, 47(15):5554-5573.
[29] Ding D, Kwok R T, Yuan Y, et al. A fluorescent light-up nanoparticle probe with aggregation-induced emission characteristics and tumor-acidity responsiveness for targeted imaging and selective suppression of cancer cells[J]. Materials Horizons, 2015, 2(1):100-105.
[30] Ashoori R C. Electrons in artificial atoms[J]. Nature, 1996, 379(6564):413-419.
[31] Hong G, Diao S, Antaris A L, et al. Carbon nanomaterials for biological imaging and nanomedicinal therapy[J]. Chemical Reviews, 2015, 115(19):10816-10906.
[32] Lin J, Chen X, Huang P. Graphene-based nanomaterials for bioimaging[J]. Advanced Drug Delivery Reviews, 2016, 105:242-254.
[33] Bloembergen N. Solid state infrared quantum counters[J]. Physical Review Letters, 1959, 2(3):84-85.
[34] Kim T, Cho E J, Chae Y, et al. Urchin-shaped manganese oxide nanoparticles as pH-responsive activatable T1 contrast agents for magnetic resonance imaging[J]. Angewandte Chemie, 2011, 123(45):10777-10781.
[35] Gao J, Liang G, Zhang B, et al. FePt@CoS2 yolk-Shell nanocrystals as a potent agent to kill HeLa cells[J]. Journal of the American Chemical Society, 2007, 129(5):1428-1433.
[36] Lusic H, Grinstaff M W. X-ray-computed tomography contrast agents[J]. Chemical Reviews, 2013, 113(3):1641-1666.
[37] Huang P, Bao L, Zhang C, et al. Folic acid-conjugated silicamodified gold nanorods for X-ray/CT imaging-guided dualmode radiation and photo-thermal therapy[J]. Biomaterials, 2011, 32(36):9796-9809.
[38] Pimlott S L, Sutherland A. Molecular tracers for the PET and SPECT imaging of disease[J]. Chemical Society Reviews, 2011, 40(1):149-162.
[39] Ni D, Jiang D, Ehlerding E B, et al. Radiolabeling silicabased nanoparticles via coordination chemistry:Basic principles, strategies, and applications[J]. Accounts of Chemical Research, 2018, 51(3):778-788.
[40] Lin J, Wang M, Hu H, et al. Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and γ-irradiation protection[J]. Advanced Materials, 2016, 28(17):3273-3279.
[41] Ferrara K W, Borden M A, Zhang H. Lipid-shelled vehicles:Engineering for ultrasound molecular imaging and drug delivery[J]. Accounts of chemical research, 2009, 42(7):881-892.
[42] Li C X, Zhang Y F, Li Z M, et al. Light-responsive biodegradable nanorattles for cancer theranostics[J]. Advanced Materials, 2017, 30(8):1706150.
[43] Kim C, Favazza C, Wang L V. In vivo photoacoustic tomography of chemicals:High-resolution functional and molecular optical imaging at new depths[J]. Chemical Reviews, 2010, 110(5):2756-2782.
[44] Wang Z, Huang P, Jacobson O, et al. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics[J]. ACS Nano, 2016, 10(3):3453-3460.
[45] Zhou J J, Jiang Y Y, Hou S, et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared Ⅱ window[J]. ACS Nano, 2018, 12(3):2643-2651.
[46] Shewach D S, Kuchta R D. Introduction to cancer chemotherapeutics[J]. Chemical Reviews, 2009, 109(7):2859-2861.
[47] Wang S, Lin J, Wang Z T, et al. Core-satellite polydopaminegadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy[J]. Advanced Materials, 2017, 29(35):1701013.
[48] Hogle W P. The state of the art in radiation therapy[J]. Seminars in Oncology Nursing, 2006, 22(4):212-220.
[49] Sadeghi M, Enferadi M, Shirazi A. External and internal radiation therapy:Past and future directions[J]. Journal of Cancer Research and Therapeutics, 2010, 6(3):239-248.
[50] Bush D A, Slater J D, Garberoglio C, et al. A technique of partial breast irradiation utilizing proton beam radiotherapy:Comparison with conformal X-ray therapy[J]. Cancer Journal, 2007, 13(2):114-118.
[51] Brown J M, Wilson W R. Exploiting tumour hypoxia in cancer treatment[J]. Nature Reviews Cancer, 2004, 4(6):437-447.
[52] Fan W P, Huang P, Chen X Y. Overcoming the Achilles' heel of photodynamic therapy[J]. Chemical Society Reviews, 2016, 45(23):6488-6519.
[53] Kalluru P, Vankayala R, Chiang C S, et al. Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by pegylated W18O49 nanowires[J]. Angewandte Chemie International Edition, 2013, 52(47):12332-12336.
[54] Yin T, Huang P, Gao G, et al. Superparamagnetic Fe3O4-PEG2K-FA@Ce6 nanoprobes for in vivo dual-mode imaging and targeted photodynamic therapy[J]. Scientific Reports, 2016, 6:36187.
[55] Lal S, Clare S E, Halas N J. Nanoshell-enabled photothermal cancer therapy:Impending clinical impact[J]. Accounts of Chemical Research, 2008, 41(12):1842-1851.
[56] Liu Z, Lin H, Zhao M L, et al. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics[J]. Theranostics, 2018, 8(6):1648-1664.
[57] Banin E, Gootwine E, Obolensky A, et al. Gene augmentation therapy restores retinal function and visual behavior in a sheep model of CNGA3 achromatopsia[J]. Molecular Therapy, 2015, 23(9):1423-1433.
[58] Kassim S H, Wilson J M, Rader D J. Gene therapy for dyslipidemia:A review of gene replacement and gene inhibition strategies[J]. Clinical Lipidology, 2010, 5(6):793-809.
[59] Vile R G, Diaz R M, Castleden S, et al. Targeted gene therapy for cancer:Herpes simplex virus thymidine kinase genemediated cell killing leads to anti-tumour immunity that can be augmented by co-expression of cytokines in the tumour cells[J]. Biochemical Society Transactions, 1997, 25(2):717-722.
[60] Jayakumar M K, Idris N M, Zhang Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers[J]. PNAS, 2012, 109(22):8483-8488.
[61] Sandin L C, Tötterman T H, Mangsbo S M. Local immunotherapy based on agonistic CD40 antibodies effectively inhibits experimental bladder cancer[J]. Oncoimmunology, 2014, 3(1):e27400.
[62] Topalian S L, Drake C G, Pardoll D M. Immune checkpoint blockade:A common denominator approach to cancer therapy[J]. Cancer Cell, 2015, 27(4):450-461.
[63] Kuai R, Ochyl L J, Bahjat K S, et al. Designer vaccine nanodiscs for personalized cancer immunotherapy[J]. Nature Materials, 2016, 16(4):489-496.
[64] Chen Q, Xu L G, Liang C, et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy[J]. Nature Communications, 2016, 7:13193.
[65] Tavaré R, Escuin-Ordinas H, Mok S, et al. An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy[J]. Cancer Research, 2016, 76(1):73-82.
[66] Ryu J H, Kim S A, Koo H, et al. Cathepsin B-sensitive nanoprobe for in vivo tumor diagnosis[J]. Journal of Materials Chemistry, 2011, 21(44):17631-17634.
[67] Huang P, Gao Y, Lin J, et al. Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics[J]. ACS Nano, 2015, 9(10):9517-9527.
[68] Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer[J]. Nanomaterials, 2017, 7(7):189.
[69] Fang S, Lin J, Li C X, et al. Dual-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic therapy[J]. Small, 2016, 13(6):1602580.
[70] Dong Z L, Feng L Z, Hao Y, et al. Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity[J]. Journal of the American Chemical Society, 2018, 140(6):2165-2178.
[71] Qi C, Lin J, Fu L H, et al. Calcium-based biomaterials for diagnosis, treatment, and theranostics[J]. Chemical Society Reviews, 2018, 47(2):357-403.
[72] You J, Zhang G D, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release[J]. ACS Nano, 2010, 4(2):1033-1041.
[73] Fan W P, Lu N, Huang P, et al. Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy[J]. Angewandte Chemie International Edition, 2016, 56(5):1229-1233.
[74] Huang K, Li Z J, Lin J, et al. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications[J]. Chemical Society Reviews, 2018, 47(14):5109-5124.
[75] Liu G Y, Zou J H, Tang Q Y, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy[J]. ACS Applied Materials & Interfaces, 2017, 9(46):40077-40086.
[76] Esra I, Ozlem Y. Silica-based organic-inorganic hybrid nanoparticles and nanoconjugates for improved anticancer drug delivery[J]. Engineering in Life Sciences. 2018, Doi:10.1002/elsc.201800038.
[77] Jessica M R, Emilia P, John E E, et al. Targeted intracellular delivery of hydrophobic agents using mesoporous hybrid silica nanoparticles as carrier systems[J]. Nano Letters, 2009, 9(9):3308-3311.
[78] Kang X, Cheng Z, Yang D, et al. Design and synthesis of multifunctional drug carriers based on luminescent rattle-type mesoporous silica microspheres with a thermosensitive hydrogel as a controlled switch[J]. Advanced Functional Materials, 2012, 22(7):1470-1481.
[79] Hirsjarvi S, Passirani C, Benoit J P. Passive and active tumour targeting with nanocarriers[J]. Current Drug Discovery Technologies, 2011, 8(3):188-196.
[80] Wang S, Huang P, Chen X Y. Stimuli-responsive programmed specific targeting in nanomedicine[J]. ACS Nano, 2016, 10(3):2991-2994.
[81] Rojas M, Donahue J P, Tan Z, et al. Genetic engineering of proteins with cell membrane permeability[J]. Nature Biotechnology, 1998, 16(4):370-375.
[82] Sainsbury F. Virus-like nanoparticles:Emerging tools for targeted cancer diagnostics and therapeutics[J]. Therapeutic Delivery, 2017, 8(12):1019-1021.
[83] Zhou Y Q, Peng Z L, Seven E S, et al. Crossing the bloodbrain barrier with nanoparticles[J]. Journal of Controlled Release, 2018, 270:290-303.
[84] Fan W P, Yung B, Huang P, et al. Nanotechnology for multimodal synergistic cancer therapy[J]. Chemical Reviews, 2017, 117(22):13566-13638.
Outlines

/