[1] Chen W Q, Zheng R S, Baade P D, et al. Cancer statistics in china, 2015[J]. CA:A Cancer Journal for Clinicians, 2016, 66(2):115-132.
[2] Fang J, Nakamura H, Maeda H. The EPR effect:Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect[J]. Advanced Drug Delivery Reviews, 2011, 63(3):136-151.
[3] Wilhelm S, Tavares A J, Dai Q, et al. Analysis of nanoparticle delivery to tumours[J]. Nature Reviews Materials, 2016, 1(5):16014.
[4] Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology:The impact of passive and active targeting in the era of modern cancer biology[J]. Advanced Drug Delivery Reviews, 2014, 66(24):2-25.
[5] Wang S, Huang P, Chen X Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization[J]. Advanced Materials, 2016, 28(34):7340-7364.
[6] Zhan W B, Gedroyc W, Xu X Y. The effect of tumour size on drug transport and uptake in 3-D tumour models reconstructed from magnetic resonance images[J]. PloS One, 2017, 12(2):e0172276.
[7] Lim E K, Kim T, Paik S, et al. Nanomaterials for theranostics:Recent advances and future challenges[J]. Chemical Reviews, 2015, 115(1):327-394.
[8] Chen H M, Zhang W Z, Zhu G Z, et al. Rethinking cancer nanotheranostics[J]. Nature Reviews Materials, 2017, 2:17024.
[9] Karathanasis E, Suryanarayanan S, Balusu S R, et al. Imaging nanoprobe for prediction of outcome of nanoparticle chemotherapy by using mammography[J]. Radiology, 2009, 250(2):398-406.
[10] Hansen A E, Petersen A L, Henriksen J R, et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes[J]. ACS Nano, 2015, 9(7):6985-6995.
[11] Holme Ø, Løberg M, Kalager M, et al. Long-term effectiveness of sigmoidoscopy screening on colorectal cancer incidence and mortality in women and men:A randomized trial[J]. Annals of Internal Medicine, 2018, 168(11):775-782.
[12] Kolarich A, George T J, Hughes S J, et al. Rectal cancer patients younger than 50 years lack a survival benefit from NCCN guideline-directed treatment for stage Ⅱ and Ⅲ disease[J]. Cancer, 2018, 124(17):3510-3519.
[13] Simoni Y, Becht E, Fehlings M, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates[J]. Nature, 2018, 557(7706):575-579.
[14] Miao L, Huang L. Exploring the tumor microenvironment with nanoparticles[J]. Cancer Treatment Research, 2015, 166:193-226.
[15] Minchinton A I, Tannock I F. Drug penetration in solid tumours[J]. Nature Reviews Cancer, 2006, 6(8):583-592.
[16] Manzoor A A, Lindner L H, Landon C D, et al. Overcoming limitations in nanoparticle drug delivery:Triggered, intravascular release to improve drug penetration into tumors[J]. Cancer Research, 2012, 72(21):5566-5575.
[17] Matsumoto Y, Nichols J W, Toh K, et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery[J]. Nature Nanotechnology, 2016, 11(6):533-538.
[18] Kaida S, Cabral H, Kumagai M, et al. Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumor model[J]. Cancer Research, 2010, 70(18):7031-7041.
[19] Ponce A M, Viglianti B L, Yu D, et al. Magnetic resonance imaging of temperature-sensitive liposome release:Drug dose painting and antitumor effects[J]. Journal of the National Cancer Institute, 2007, 99(1):53-63.
[20] Jin C S, Overchuk M, Cui L, et al. Nanoparticle-enabled selective destruction of prostate tumor using MRI-guided focal photothermal therapy[J]. Prostate, 2016, 76(13):1169-1181.
[21] Wang M N, Zhao J Z, Zhang L H, et al. Role of tumor microenvironment in tumorigenesis[J]. Journal of Cancer, 2017, 8(5):761-773.
[22] Fu L H, Qi C, Lin J, et al. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment[J]. Chemical Society Reviews, 2018, 47(17):6454-6472.
[23] van Es S C, Brouwers A H, Mahesh S V K, et al. 89Zr-bevacizumab PET:Potential early indicator of everolimus efficacy in patients with metastatic renal cell carcinoma[J]. Journal of Nuclear Medicine, 2017, 58(6):905-910.
[24] Zhu X J, Feng W, Chang J, et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature[J]. Nature Communications, 2016, 7:10437.
[25] Huang K, Idris N M, Zhang Y. Engineering of lanthanidedoped upconversion nanoparticles for optical encoding[J]. Small, 2015, 12(7):836-852.
[26] Park S M, Aalipour A, Vermesh O, et al. Towards clinically translatable in vivo nanodiagnostics[J]. Nature Reviews Materials, 2017, 2(5):17014.
[27] Fei X N, Gu Y C. Progress in modifications and applications of fluorescent dye probe[J]. Progress in Natural Science, 2009, 19(1):1-7.
[28] Mu J, Lin J, Huang P, et al. Development of endogenous enzyme-responsive nanomaterials for theranostics[J]. Chemical Society Reviews, 2018, 47(15):5554-5573.
[29] Ding D, Kwok R T, Yuan Y, et al. A fluorescent light-up nanoparticle probe with aggregation-induced emission characteristics and tumor-acidity responsiveness for targeted imaging and selective suppression of cancer cells[J]. Materials Horizons, 2015, 2(1):100-105.
[30] Ashoori R C. Electrons in artificial atoms[J]. Nature, 1996, 379(6564):413-419.
[31] Hong G, Diao S, Antaris A L, et al. Carbon nanomaterials for biological imaging and nanomedicinal therapy[J]. Chemical Reviews, 2015, 115(19):10816-10906.
[32] Lin J, Chen X, Huang P. Graphene-based nanomaterials for bioimaging[J]. Advanced Drug Delivery Reviews, 2016, 105:242-254.
[33] Bloembergen N. Solid state infrared quantum counters[J]. Physical Review Letters, 1959, 2(3):84-85.
[34] Kim T, Cho E J, Chae Y, et al. Urchin-shaped manganese oxide nanoparticles as pH-responsive activatable T1 contrast agents for magnetic resonance imaging[J]. Angewandte Chemie, 2011, 123(45):10777-10781.
[35] Gao J, Liang G, Zhang B, et al. FePt@CoS2 yolk-Shell nanocrystals as a potent agent to kill HeLa cells[J]. Journal of the American Chemical Society, 2007, 129(5):1428-1433.
[36] Lusic H, Grinstaff M W. X-ray-computed tomography contrast agents[J]. Chemical Reviews, 2013, 113(3):1641-1666.
[37] Huang P, Bao L, Zhang C, et al. Folic acid-conjugated silicamodified gold nanorods for X-ray/CT imaging-guided dualmode radiation and photo-thermal therapy[J]. Biomaterials, 2011, 32(36):9796-9809.
[38] Pimlott S L, Sutherland A. Molecular tracers for the PET and SPECT imaging of disease[J]. Chemical Society Reviews, 2011, 40(1):149-162.
[39] Ni D, Jiang D, Ehlerding E B, et al. Radiolabeling silicabased nanoparticles via coordination chemistry:Basic principles, strategies, and applications[J]. Accounts of Chemical Research, 2018, 51(3):778-788.
[40] Lin J, Wang M, Hu H, et al. Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and γ-irradiation protection[J]. Advanced Materials, 2016, 28(17):3273-3279.
[41] Ferrara K W, Borden M A, Zhang H. Lipid-shelled vehicles:Engineering for ultrasound molecular imaging and drug delivery[J]. Accounts of chemical research, 2009, 42(7):881-892.
[42] Li C X, Zhang Y F, Li Z M, et al. Light-responsive biodegradable nanorattles for cancer theranostics[J]. Advanced Materials, 2017, 30(8):1706150.
[43] Kim C, Favazza C, Wang L V. In vivo photoacoustic tomography of chemicals:High-resolution functional and molecular optical imaging at new depths[J]. Chemical Reviews, 2010, 110(5):2756-2782.
[44] Wang Z, Huang P, Jacobson O, et al. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics[J]. ACS Nano, 2016, 10(3):3453-3460.
[45] Zhou J J, Jiang Y Y, Hou S, et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared Ⅱ window[J]. ACS Nano, 2018, 12(3):2643-2651.
[46] Shewach D S, Kuchta R D. Introduction to cancer chemotherapeutics[J]. Chemical Reviews, 2009, 109(7):2859-2861.
[47] Wang S, Lin J, Wang Z T, et al. Core-satellite polydopaminegadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy[J]. Advanced Materials, 2017, 29(35):1701013.
[48] Hogle W P. The state of the art in radiation therapy[J]. Seminars in Oncology Nursing, 2006, 22(4):212-220.
[49] Sadeghi M, Enferadi M, Shirazi A. External and internal radiation therapy:Past and future directions[J]. Journal of Cancer Research and Therapeutics, 2010, 6(3):239-248.
[50] Bush D A, Slater J D, Garberoglio C, et al. A technique of partial breast irradiation utilizing proton beam radiotherapy:Comparison with conformal X-ray therapy[J]. Cancer Journal, 2007, 13(2):114-118.
[51] Brown J M, Wilson W R. Exploiting tumour hypoxia in cancer treatment[J]. Nature Reviews Cancer, 2004, 4(6):437-447.
[52] Fan W P, Huang P, Chen X Y. Overcoming the Achilles' heel of photodynamic therapy[J]. Chemical Society Reviews, 2016, 45(23):6488-6519.
[53] Kalluru P, Vankayala R, Chiang C S, et al. Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by pegylated W18O49 nanowires[J]. Angewandte Chemie International Edition, 2013, 52(47):12332-12336.
[54] Yin T, Huang P, Gao G, et al. Superparamagnetic Fe3O4-PEG2K-FA@Ce6 nanoprobes for in vivo dual-mode imaging and targeted photodynamic therapy[J]. Scientific Reports, 2016, 6:36187.
[55] Lal S, Clare S E, Halas N J. Nanoshell-enabled photothermal cancer therapy:Impending clinical impact[J]. Accounts of Chemical Research, 2008, 41(12):1842-1851.
[56] Liu Z, Lin H, Zhao M L, et al. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics[J]. Theranostics, 2018, 8(6):1648-1664.
[57] Banin E, Gootwine E, Obolensky A, et al. Gene augmentation therapy restores retinal function and visual behavior in a sheep model of CNGA3 achromatopsia[J]. Molecular Therapy, 2015, 23(9):1423-1433.
[58] Kassim S H, Wilson J M, Rader D J. Gene therapy for dyslipidemia:A review of gene replacement and gene inhibition strategies[J]. Clinical Lipidology, 2010, 5(6):793-809.
[59] Vile R G, Diaz R M, Castleden S, et al. Targeted gene therapy for cancer:Herpes simplex virus thymidine kinase genemediated cell killing leads to anti-tumour immunity that can be augmented by co-expression of cytokines in the tumour cells[J]. Biochemical Society Transactions, 1997, 25(2):717-722.
[60] Jayakumar M K, Idris N M, Zhang Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers[J]. PNAS, 2012, 109(22):8483-8488.
[61] Sandin L C, Tötterman T H, Mangsbo S M. Local immunotherapy based on agonistic CD40 antibodies effectively inhibits experimental bladder cancer[J]. Oncoimmunology, 2014, 3(1):e27400.
[62] Topalian S L, Drake C G, Pardoll D M. Immune checkpoint blockade:A common denominator approach to cancer therapy[J]. Cancer Cell, 2015, 27(4):450-461.
[63] Kuai R, Ochyl L J, Bahjat K S, et al. Designer vaccine nanodiscs for personalized cancer immunotherapy[J]. Nature Materials, 2016, 16(4):489-496.
[64] Chen Q, Xu L G, Liang C, et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy[J]. Nature Communications, 2016, 7:13193.
[65] Tavaré R, Escuin-Ordinas H, Mok S, et al. An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy[J]. Cancer Research, 2016, 76(1):73-82.
[66] Ryu J H, Kim S A, Koo H, et al. Cathepsin B-sensitive nanoprobe for in vivo tumor diagnosis[J]. Journal of Materials Chemistry, 2011, 21(44):17631-17634.
[67] Huang P, Gao Y, Lin J, et al. Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics[J]. ACS Nano, 2015, 9(10):9517-9527.
[68] Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer[J]. Nanomaterials, 2017, 7(7):189.
[69] Fang S, Lin J, Li C X, et al. Dual-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic therapy[J]. Small, 2016, 13(6):1602580.
[70] Dong Z L, Feng L Z, Hao Y, et al. Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity[J]. Journal of the American Chemical Society, 2018, 140(6):2165-2178.
[71] Qi C, Lin J, Fu L H, et al. Calcium-based biomaterials for diagnosis, treatment, and theranostics[J]. Chemical Society Reviews, 2018, 47(2):357-403.
[72] You J, Zhang G D, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release[J]. ACS Nano, 2010, 4(2):1033-1041.
[73] Fan W P, Lu N, Huang P, et al. Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy[J]. Angewandte Chemie International Edition, 2016, 56(5):1229-1233.
[74] Huang K, Li Z J, Lin J, et al. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications[J]. Chemical Society Reviews, 2018, 47(14):5109-5124.
[75] Liu G Y, Zou J H, Tang Q Y, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy[J]. ACS Applied Materials & Interfaces, 2017, 9(46):40077-40086.
[76] Esra I, Ozlem Y. Silica-based organic-inorganic hybrid nanoparticles and nanoconjugates for improved anticancer drug delivery[J]. Engineering in Life Sciences. 2018, Doi:10.1002/elsc.201800038.
[77] Jessica M R, Emilia P, John E E, et al. Targeted intracellular delivery of hydrophobic agents using mesoporous hybrid silica nanoparticles as carrier systems[J]. Nano Letters, 2009, 9(9):3308-3311.
[78] Kang X, Cheng Z, Yang D, et al. Design and synthesis of multifunctional drug carriers based on luminescent rattle-type mesoporous silica microspheres with a thermosensitive hydrogel as a controlled switch[J]. Advanced Functional Materials, 2012, 22(7):1470-1481.
[79] Hirsjarvi S, Passirani C, Benoit J P. Passive and active tumour targeting with nanocarriers[J]. Current Drug Discovery Technologies, 2011, 8(3):188-196.
[80] Wang S, Huang P, Chen X Y. Stimuli-responsive programmed specific targeting in nanomedicine[J]. ACS Nano, 2016, 10(3):2991-2994.
[81] Rojas M, Donahue J P, Tan Z, et al. Genetic engineering of proteins with cell membrane permeability[J]. Nature Biotechnology, 1998, 16(4):370-375.
[82] Sainsbury F. Virus-like nanoparticles:Emerging tools for targeted cancer diagnostics and therapeutics[J]. Therapeutic Delivery, 2017, 8(12):1019-1021.
[83] Zhou Y Q, Peng Z L, Seven E S, et al. Crossing the bloodbrain barrier with nanoparticles[J]. Journal of Controlled Release, 2018, 270:290-303.
[84] Fan W P, Yung B, Huang P, et al. Nanotechnology for multimodal synergistic cancer therapy[J]. Chemical Reviews, 2017, 117(22):13566-13638.