[1] Zhang Y, Ptacin J L, Fischer E C, et al. A semi-synthetic organism that stores and retrieves increased genetic information[J]. Nature, 2017, 551(7682):644-647.
[2] Jayasena S D. Aptamers:An emerging class of molecules that rival antibodies in diagnostics[J]. Clinical Chemistry, 1999, 45(9):1628-1650.
[3] Keefe A D, Pai S, Ellington A. Aptamers as therapeutics[J]. Nature Reviews:Drug Discovery, 2010, 9(7):537-550.
[4] Shangguan D H, Li Y, Tang Z W, et al. Aptamers evolved from live cells as effective molecular probes for cancer study[J]. PNAS, 2006, 103(32):11838-11843.
[5] Shangguan D H, Meng L, Cao Z C, et al. Identification of liver cancer-specific aptamers using whole live cells[J]. Analytical Chemistry, 2008, 80(3):721-728.
[6] Chen H W, Medley C D, Sefah K, et al. Molecular recognition of small-cell lung cancer cells using aptamers[J]. ChemMedChem:Chemistry Enabling Drug Discovery, 2008, 3(6):991-1001.
[7] Shangguan D H, Cao Z C, Li Y, et al. Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples[J]. Clinical Chemistry, 2007, 53(6):1153-1155.
[8] Tolle F, Brändle M G. Dressed for success-Applying chemistry to modulate aptamer functionality[J]. Chemical Science, 2013, 4(1):60-67.
[9] Zichi D, Eaton B, Singer B, et al. Proteomics and diagnostics:Let's get specific, again[J]. Current Opinion in Chemical Biology, 2008, 12(1):78-85.
[10] Tolle F, Brandle G M, Matzner D, et al. A versatile approach towards nucleobase-modified aptamers[J]. Angewandte Chemie International Edition, 2015, 54(37):10971-10974.
[11] Zhang L Q, Wan S, Jiang Y, et al. Molecular elucidation of disease biomarkers at the interface of chemistry and biology[J]. Journal of the American Chemical Society, 2017, 139(7):2532-2540.
[12] Kimoto M, Yamashige R, Matsunaga K, et al. Generation of high-affinity DNA aptamers using an expanded genetic alphabet[J]. Nature Biotechnology, 2013, 31(5):453-457.
[13] Sefah K, Yang Z, Bradley K M, et al. In vitro selection with artificial expanded genetic information systems[J]. PNAS, 2014, 111(4):1449-1454.
[14] Ren X, Gelinas A D, von Carlowitz I, et al. Structural basis for IL-1alpha recognition by a modified DNA aptamer that specifically inhibits IL-1alpha signaling[J]. Nature Communications, 2017, 8(1):810.
[15] Chen Z, Lichtor P A, Berliner A P, et al. Evolution of sequence-defined highly functionalized nucleic acid polymers[J]. Nature Chemistry, 2018, 10(4):420-427.
[16] Malyshev D A, Seo Y J, Ordoukhanian P, et al. PCR with an expanded genetic alphabet[J]. Journal of the American Chemical Society, 2009, 131(41):14620-14621.
[17] Li L, Degardin M, Lavergne T, et al. Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications[J]. Journal of the American Chemical Society, 2014, 136(3):826-829.
[18] Yang Z, Sismour A M, Sheng P, et al. Enzymatic incorporation of a third nucleobase pair[J]. Nucleic Acids Research, 2007, 35(13):4238-4249.
[19] Hirao I, Kimoto M, Mitsui T, et al. An unnatural hydrophobic base pair system:Site-specific incorporation of nucleotide analogs into DNA and RNA[J]. Nature Methods, 2006, 3(9):729-735.
[20] Malyshev D A, Dhami K, Lavergne T, et al. A semi-synthetic organism with an expanded genetic alphabet[J]. Nature, 2014, 509(7500):385-388.
[21] 陈非, 董梦醒, 葛猛, 等. 人造碱基与人工合成生命[J]. 中国科学院院刊, 2016, 31(4):457-466. Chen Fei, Dong Mengxing, Ge Meng, et al. Artificial bases and synthetic life[J]. Bulelletin of Chinese Academy of Sciences, 2016, 31(4):457-466.
[22] Wang R W, Jin C, Zhu X Y, et al. Artificial base zT as functional "element" for constructing photoresponsive DNA nanomolecules[J]. Journal of the American Chemical Society, 2017, 139(27):9104-9107.
[23] Wang R W, Wang C M, Cao Y, et al. Trifluoromethylated nucleic acid analogues capable of self-assembly through hydrophobic interactions[J]. Chemical Science, 2014, 5(10):4076-4081.
[24] Maberley D. Pegaptanib for neovascular age-related macular degeneration[J]. Issues in Emerging Health Technologies, 2005(76):1-4.
[25] Stuart R K, Stockerl-Goldstein K, Cooper M, et al. Randomized phase Ⅱ trial of the nucleolin targeting aptamer AS1411 combined with high-dose cytarabine in relapsed/refractory acute myeloid leukemia (AML)[J]. Journal of Clinical Oncology, 2009, 27(15S):7019-7019.
[26] Dobrovolsky A B, Titaeva E V, Khaspekova S G, et al. Inhibition of thrombin activity with DNA-aptamers[J]. Bulletin of Experimental Biology and Medicine, 2009, 148(1):33-36.
[27] Huang Y F, Shangguan D, Liu H, et al. Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells[J]. ChemBioChem, 2009, 10(5):862-868.
[28] Boyacioglu O, Stuart C H, Kulik G, et al. Dimeric DNA aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages[J]. Molecular Therapy-Nucleic Acids, 2013, 2:e107.
[29] Wang R, Zhu G, Mei L, et al. Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery[J]. Journal of the American Chemical Society, 2014, 136(7):2731-2734.
[30] Zhu G Z, Niu G, Chen X Y. Aptamer-drug conjugates[J]. Bioconjugate Chemistry, 2015, 26(11):2186-2197.
[31] Li F F, Lu J, Liu J, et al. A water-soluble nucleolin aptamerpaclitaxel conjugate for tumor-specific targeting in ovarian cancer[J]. Nature Communications, 2017, 8(1):1390.
[32] Gray B P, Kelly L, Ahrens D P, et al. Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer[J]. PNAS, 2018, 115(18):4761-4766.
[33] Zhu G Z, Zheng J, Song E Q, et al. Self-assembled, aptamertethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics[J]. PNAS, 2013, 110(20):7998-8003.
[34] Zhu G Z, Meng L, Ye M, et al. Self-assembled aptamerbased drug carriers for bispecific cytotoxicity to cancer cells[J]. Chemistry-An Asian Journal, 2012, 7(7):1630-1636.
[35] Chen K, Liu B, Yu B, et al. Advances in the development of aptamer drug conjugates for targeted drug delivery[J]. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology, 2017, 9(3):e1438.
[36] Breaker R R, Joyce G F. A DNA enzyme that cleaves RNA[J]. Chemistry and Biology,1994, 1(4):223-229.
[37] Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions[J]. Journal of the American Chemical Society, 2000, 122(42):10466-10467.
[38] Wang H, Kim Y, Liu H P, et al. Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring[J]. Journal of the American Chemical Society, 2009, 131(23):8221-8226.
[39] Kong R M, Zhang X B, Chen Z, et al. Unimolecular catalytic DNA biosensor for amplified detection of L-histidine via an enzymatic recycling cleavage strategy[J]. Analytical Chemistry, 2011, 83(20):7603-7607.
[40] Lu L M, Zhang X B, Kong R M, et al. A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal[J]. Journal of the American Chemical Society, 2011, 133(30):11686-11691.
[41] Zhao X H, Gong L, Zhang X B, et al. Versatile DNAzymebased amplified biosensing platforms for nucleic acid, protein, and enzyme activity detection[J]. Analytical Chemistry, 2013, 85(7):3614-3620.
[42] Fan H H, Zhao Z L, Yan G B, et al. A smart DNAzymeMnO2 nanosystem for efficient gene silencing[J]. Angewandte Chemie International Edition, 2015, 54(16):4801-4805.
[43] Tyagi S, Kramer F R. Molecular beacons:Probes that fluoresce upon hybridization[J]. Nature Biotechnology, 1996, 14(3):303-308.
[44] Goel G, Kumar A, Puniya A K, et al. Molecular beacon:A multitask probe[J]. Journal of Applied Microbiology, 2005, 99(3):435-442.
[45] Tan W, Wang K, Drake T J. Molecular beacons[J]. Current Opinion in Chemical Biology, 2004, 8(5):547-553.
[46] Zheng J, Yang R H, Shi M L, et al. Rationally designed molecular beacons for bioanalytical and biomedical applications[J]. Chemical Society Reviews, 2015, 44(10):3036-3055.
[47] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287):818-822.
[48] Zhang X B, Wang Z, Xing H, et al. Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity[J]. Analytical Chemistry, 2010, 82(12):5005-5011.
[49] Thurley S, Roglin L, Seitz O. Hairpin peptide beacon:Duallabeled PNA-peptide-hybrids for protein detection[J]. Journal of the American Chemical Society, 2007, 129(42):12693-12695.
[50] Bratu D P, Cha B J, Mhlanga M M, et al. Visualizing the distribution and transport of mRNAs in living cells[J]. PNAS, 2003, 100(23):13308-13313.
[51] Medley C D, Drake T J, Tomasini J M, et al. Simultaneous monitoring of the expression of multiple genes inside of single breast carcinoma cells[J]. Analytical Chemistry, 2005, 77(15):4713-4718.
[52] Li J J, Tan W. A Single DNA molecule nanomotor[J]. Nano Letters, 2002, 2(4):315-318.
[53] Kang H, Liu H, Phillips J A, et al. Single-DNA molecule nanomotor regulated by photons[J]. Nano Letters, 2009, 9(7):2690-2696.
[54] Peng L, You M X, Yuan Q, et al. Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization[J]. Journal of the American Chemical Society, 2012, 134(29):12302-12307.
[55] You M X, Huang F J, Chen Z, et al. Building a nanostructure with reversible motions using photonic energy[J]. ACS Nano, 2012, 6(9):7935-7941.