Exclusive: Nanobiomedicine

Drug delivery based on DNA nanorobots

  • JIANG Qiao ,
  • WEI Yu ,
  • LI Can ,
  • SONG Linlin ,
  • DING Baoquan ,
  • ZHAO Yuliang
Expand
  • 1. Nanoscience, National Center for NanoScience and Technology, Beijing 100190, China;
    2. Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China

Received date: 2018-07-10

  Revised date: 2018-10-12

  Online published: 2018-12-14

Abstract

Natural mechanical devices carry out critical tasks for cell function, including DNA replication, intracellular transport, ion pumping and cell motility. Inspired by nature, artificial devices and machines on the molecular scale have been bottom-up designed, constructed, and operated. The unique chemical and physical properties enable DNA molecules to serve as building blocks to construct artificial, machine-like nanostructures. DNA nanostructures are characteristic of the uniform sizes and shapes, precise spatial addressability and reconfigurable mechanical operation as well as excellent biocompatibility, showing great promise for drug delivery. After integrating specific functional moieties on addressable structures, therapeutic DNA nanorobots have been constructed, which can deliver cargoes to target diseased cells or region, responsively release the loaded drugs and enhance the therapeutic efficacy. The molecular cargoes attached to DNA-based nanocarriers are usually three types:small molecular drugs, functional oligonucleotides, and therapeutic proteins. In this review, recent advances of DNA nanocarriers and therapeutic nanorobots for intelligent drug delivery are summarized. The challenges and future perspectives regarding functional DNA materials are discussed.

Cite this article

JIANG Qiao , WEI Yu , LI Can , SONG Linlin , DING Baoquan , ZHAO Yuliang . Drug delivery based on DNA nanorobots[J]. Science & Technology Review, 2018 , 36(22) : 66 -73 . DOI: 10.3981/j.issn.1000-7857.2018.22.005

References

[1] Omabegho T, Sha R, Seeman N C. A bipedal DNA brownian motor with coordinated legs[J]. Science, 2009, 324(5923):67-71.
[2] Thubagere A J, Li W, Johnson R F, et al. A cargo-sorting DNA robot[J]. Science, 2017, 357(6356):1095-1096.
[3] Douglas S M, Bachelet I, Church G M. A logic-gated nanorobot for targeted transport of molecular payloads[J]. Science, 2012, 335(6070):831-834.
[4] Kallenbach N R, Ma R I, Seeman N C. An immobile nucleicacid junction constructed from oligonucleotides[J]. Nature, 1983, 305(5937):829-31.
[5] Seeman N C. Nucleic-acid junctions and lattices[J]. Journal of Theoretical Biology, 1982, 99(2):237-247.
[6] Rothemund P W K. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082):297-302.
[7] Ke Y G, Ong L L, Shih W M, et al. Three-dimensional structures self-assembled from DNA bricks[J]. Science, 2012, 338(6111):1177-83.
[8] Wei B, Dai M J, Yin P. Complex shapes self-assembled from single-stranded DNA tiles[J]. Nature, 2012, 485(7400):623-626.
[9] Li B L, Setyawati M I, Chen L Y, et al. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery[J]. ACS Applied Materials & Interfaces, 2017, 9(18):15286-96.
[10] Yang H, Mclaughlin C K, Aldaye F A, et al. Metal-nucleic acid cages[J]. Nature Chemistry, 2009, 1(5):390-396.
[11] Yang H, Rys A Z, Mclaughlin C K, et al. Templated ligand environments for the selective incorporation of different metals into DNA[J]. Angewandte Chemie International Edition, 2009, 48(52):9919-9923.
[12] Yang H, Sleiman H F. Templated synthesis of highly stable, electroactive, and dynamic metal-DNA branched junctions[J]. Angewandte Chemie International Edition, 2008, 47(13):2443-2446.
[13] Jones M R, Seeman N C, Mirkin C A. Programmable materials and the nature of the DNA bond[J]. Science, 2015, 347(6224):1260901
[14] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature, 1996, 382(6592):607-609.
[15] Rosi N L, Giljohann D A, Thaxton C S, et al. Oligonucleotidemodified gold nanoparticles for intracellular gene regulation[J]. Science, 2006, 312(5776):1027-1030.
[16] Seferos D S, Giljohann D A, Hill H D, et al. Nano-flares:Probes for transfection and mRNA detection in living cells[J]. Journal of the American Chemical Society, 2007, 129(50):15477-15479.
[17] Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticle probes[J]. Science, 2000, 289(5485):1757-1760.
[18] Chen G, Liu D, He C B, et al. Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing[J]. Journal of the American Chemical Society, 2015, 137(11):3844-3851.
[19] Hamblin G D, Carneiro K M M, Fakhoury J F, et al. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability[J]. Journal of the American Chemical Society, 2012, 134(6):2888-2891.
[20] Ouyang X Y, Li J, Liu H J, et al. Rolling circle amplificationbased DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs[J]. Small, 2013, 9(18):3082-3087.
[21] Sun W J, Jiang T Y, Lu Y, et al. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery[J]. Journal of the American Chemical Society, 2014, 136(42):14722-14725.
[22] Yan J, Hu C Y, Wang P, et al. Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery[J]. Angewandte Chemie International Edition, 2015, 54(8):2431-2435.
[23] Carvalho C, Santos R X, Cardoso S, et al. Doxorubicin:The good, the bad and the ugly effect[J]. Current Medicinal Chemistry, 2009, 16(25):3267-3285.
[24] Tacar O, Sriamornsak P, Dass C R. Doxorubicin:An update on anticancer molecular action, toxicity and novel drug delivery systems[J]. Journal of Pharmacy and Pharmacology, 2013, 65(2):157-170.
[25] Zhu G, Zheng J, Song E, et al. A Self-assembled, aptamertethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics[J]. PNAS, 2013, 110(20):7998-8003.
[26] Jiang Q, Song C, Nangreave J, et al. DNA origami as a carrier for circumvention of drug resistance[J]. Journal of the American Chemical Society, 2012, 134(32):13396-13403.
[27] Zhao Y X, Shaw A, Zeng X, et al. DNA origami delivery system for cancer therapy with tunable release properties[J]. ACS Nano, 2012, 6(10):8684-8691.
[28] Zhang Q, Jiang Q, Li N, et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy[J]. ACS Nano, 2014, 8(7):6633-6643.
[29] Mei L, Zhu G Z, Qiu L P, et al. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery[J]. Nano Research, 2015, 8(11):3447-3460.
[30] Kanzler H, Barrat F J, Hessel E M, et al. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists[J]. Nature Medicine, 2007, 13(5):552-559.
[31] Krieg A M, Yi A K, Matson S, et al. CpG motifs in bacterialDNA trigger direct B-cell activation[J]. Nature, 1995, 374(6522):546-549.
[32] Klinman D M. Immunotherapeutic uses of CpG oligodeoxynucleotides[J]. Nature Reviews Immunology, 2004, 4(4):248-257.
[33] Schuller V J, Heidegger S, Sandholzer N, et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures[J]. ACS Nano, 2011, 5(12):9696-9702.
[34] Zhang L Q, Zhu G Z, Mei L, et al. Self-assembled DNA immunonanoflowers as multivalent CpG nanoagents[J]. ACS Applied Materials & Interfaces, 2015, 7(43):24069-24074.
[35] Qu Y J, Yang J J, Zhan P F, et al. Self-assembled DNA dendrimer nanoparticle for efficient delivery of immunostimulatory CpG motifs[J]. ACS Applied Materials & Interfaces, 2017, 9(24):20324-20329.
[36] Lee H, Lytton-Jean A K R, Chen Y, et al. Molecularly selfassembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J]. Nature Nanotechnology, 2012, 7:389-393.
[37] Gu Z, Biswas A, Zhao M X, et al. Tailoring nanocarriers for intracellular protein delivery[J]. Chemical Society Reviews, 2011, 40(7):3638-3655.
[38] Leader B, Baca Q J, Golan D E. Protein therapeutics:A summary and pharmacological classification[J]. Nature Reviews Drug Discovery, 2008, 7(1):21-39.
[39] Scott A M, Wolchok J D, Old L J. Antibody therapy of cancer[J]. Nature Reviews Cancer, 2012, 12(4):278-287.
[40] Liu X W, Xu Y, Yu T, et al. A DNA nanostructure platform for directed assembly of synthetic vaccines[J]. Nano Letters, 2012, 12(8):4254-4259.
[41] Crawford R, Erben C M, Periz J, et al. Non-covalent single transcription factor encapsulation inside a DNA cage[J]. Angewandte Chemie International Edition, 2013, 52(8):2284-2288.
[42] Brodin J D, Sprangers A J, Mcmillan J R, et al. DNA-mediated cellular delivery of functional enzymes[J]. Journal of the American Chemical Society, 2015, 137(47):14838-14841.
[43] Modi S, Swetha M G, Goswami D, et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells[J], Nature Nanotechnology, 2009, 4:325-330.
[44] Bhatia D, Surana S, Chakraborty S, et al. A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging[J]. Nature Communication, 2011, 2:339.
[45] Modi S, Nizak C, Surana S, et al. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell[J]. Nature Nanotechnology, 2013, 8:459-467.
[46] Bhatia D, Arumugam S, Nasilowski M, et al. Quantum dotloaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways[J], Nature Nanotechnology, 2016, 11:1112-1119.
[47] Veetil A T, Chakraborty K, Xiao K N, et al. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules[J], Nature Nanotechnology, 2017, 12:1183-1189.
[48] Amir Y, Ben-Ishay E, Levner D, et al. Universal computing by DNA origami robots in a living animal[J]. Nature Nanotechnology, 2014, 9(5):353-357.
[49] Arnon S, Dahan N, Koren A, et al. Thought-controlled nanoscale robots in a living host[J]. PLoS One, 2016, 11(8):e0161227.
[50] Li S P, Jiang Q, Liu S L, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo[J]. Nature Biotechnology, 2018, 36(3):258-264.
[51] Jiang D W, Ge Z L, Im H J, et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury[J]. Nature Biomedical Engineering, 2018, 2(11):865-877.
[52] Ponnuswamy N, Bastings M M C, Nathwani B, et al. Oligolysine-based coating protects DNA nanostructures from lowsalt denaturation and nuclease degradation[J]. Nature Communication, 2017, 8:15654.
[53] K. Ren W, Y. Liu, J. Wu, et al. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery[J]. Nature Communication, 2016, 7:13580.
Outlines

/