Exclusive: Nanobiomedicine

Recent progress of in vitro diagnostic technology based on nanomaterials

  • LI Wanwan ,
  • SHEN Mengfei ,
  • LIU Xinyi
Expand
  • School of Materials Science and Engineering, Shanghai Jiao Tong University;State Key Lab of Metal Matrix Composites, Shanghai 200240, China

Received date: 2018-07-30

  Revised date: 2018-09-25

  Online published: 2018-12-14

Abstract

Due to their unique optical, magnetic, electrical, and thermal properties, nanomaterials can be utilized to generate different types of detection signals, amplify the intensity of detection signal, and simplify diagnostic procedure, indicating their great potential in the development of various nanomaterials based in vitro diagnostic technologies. In this review, we first introduce unique properties of typical nanomaterials of quantum dots, gold nanoparticles and iron oxide nanoparticles commonly used in in vitro diagnostic applications, and then discuss the current advances of diagnostic systems by utilizing their optical, magnetic, electrical, and thermal properties for the detection of nucleic acids, proteins, small molecules, bacteria and viruses. Finally, we summarize the challenges of large-scale synthesis and surface modification of the nanoparticles, automatic detection and clinical evaluation. We hope this review will help drive the development of nanomaterials based in vitro diagnostic technology and its related fields.

Cite this article

LI Wanwan , SHEN Mengfei , LIU Xinyi . Recent progress of in vitro diagnostic technology based on nanomaterials[J]. Science & Technology Review, 2018 , 36(22) : 74 -86 . DOI: 10.3981/j.issn.1000-7857.2018.22.006

References

[1] In vitro diagnostics[EB/OL].[2018-09-20]. https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/default.htm.
[2] Directive 98/79/CE on in vitro diagnostic medical devices[EB/OL].[2018-09-20]. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1998:331:0001:0037:EN:PDF.
[3] Peeling R W, Mabey D. Point-of-care tests for diagnosing infections in the developing world[J]. Clinical Microbiology and Infection, 2010, 16(8):1062-1069.
[4] Pulido M R, García-Quintanilla M, Martín-Peña R, et al. Progress on the development of rapid methods for antimicrobial susceptibility testing[J]. Journal of Antimicrobial Chemotherapy, 2013, 68(12):2710-2717.
[5] Sia S K, Linder V, Parviz B A, et al. An integrated approach to a portable and low-cost immunoassay for resource-poor settings[J]. Angewandte Chemie International Edition, 2004, 43:498-502.
[6] Posthuma-Trumpie G A, Korf J, Van Amerongen A. Lateral flow (immuno) assay:Its strengths, weaknesses, opportunities and threats[J]. Analytical and Bioanalytical Chemistry, 2008, 393(2):569-582.
[7] Niemz A, Ferguson T M, Boyle D S. Point-of-care nucleic acid testing for infectious diseases[J]. Trends in Biotechnology, 2011, 29(5):240-250.
[8] Sharma S, Zapatero-Rodr J, Estrela P, et al. Point-of-Care diagnostics in low resource settings:Present status and future role of microfluidics[J]. Biosensors, 2015, 5(3):577-601.
[9] Balogh L P. Why do we have so many definitions for nanoscience and nanotechnology[J]. Nanomedicine-Nanotechnology Biology and Medicine, 2010, 6(3):397-398.
[10] Kim B Y S, Rutka J T, Chan W C W. Nanomedicine[J]. The New England Journal of Medicine 2010, 363(25):2434-2443.
[11] Link S, El-Sayed M A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals[J]. International Reviews in Physical Chemistry, 2000, 19(3):409-453.
[12] Agasti S S, Rana S, Park M H, et al. Nanoparticles for detection and diagnosis[J]. Advanced Drug Delivery Reviews, 2010, 62(3):316-328.
[13] Leng Y, Sun K, Chen X, et al. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection[J]. Chemical Society Reviews, 2015, 44(15):5552-5595.
[14] Zhou W, Gao X, Liu D, et al. Gold nanoparticles for in vitro diagnostics[J]. Chemical Reviews 2015, 115(19):10575-10636.
[15] Kim J, Mohamed M A A, Zagorovsky K, et al. State of diagnosing infectious pathogens using colloidal nanomaterials[J]. Biomaterials, 2017, 146:97-114.
[16] Reiss P, Protière M, Li L. Core/shell semiconductor nanocrystals[J]. Small, 2009, 5(2):154-168.
[17] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251):933-937.
[18] Kairdolf B A, Smith A M, Stokes T H, et al. Semiconductor quantum dots for bioimaging and biodiagnostic applications[J]. Annual Review of Analytical Chemistry, 2013, 6(1):143-162.
[19] Alivisatos A P. The use of nanocrystals in biological detection[J]. Nature Biotechnology, 2004, 22(1):47-52
[20] Jin Z, Hildebrandt N. Semiconductor quantum dots for in vitro diagnostics and cellular imaging[J]. Trends Biotechnology. 2012, 30(7):394-403.
[21] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003, 107(3):668-677.
[22] Ghosh S K, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:From theory to applications[J]. Chemical Reviews, 2007, 107(11):4797-4862.
[23] Gao J, Bender C M, Murphy C J. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution[J]. Langmuir, 2003, 19(21):9065-9070.
[24] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science, 1997, 277(5329):1078-1081.
[25] Jain P K, Huang X, El-Sayed I H, et al. Noble metals on the nanoscale:Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research, 2008, 41(12):1578-1586.
[26] Reddy L H, Arias J L, Nicolas J, et al. Magnetic nanoparticles:Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications[J]. Chemical Reviews, 2012, 112(11):5818-5878.
[27] Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology[J]. Radiology & Oncology, 2011, 45(1):1-16.
[28] Zou Z, Du D, Wang J, et al. Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos[J]. Analytical Chemistry, 2010, 82(12):5125-5133.
[29] Peng C, Li Z, Zhu Y, et al. Simultaneous and sensitive determination of multiplex chemical residues based on multicolor quantum dot probes[J]. Biosensors & Bioelectronics, 2009, 24(12):3657-3662.
[30] Park J, Park Y, Kim S. Signal amplification via biological self-assembly of surface-engineered quantum dots for multiplexed subattomolar immunoassays and apoptosis imaging[J]. ACS Nano, 2013, 7(10):9416-9427.
[31] Chen Z H, Liang R L, Guo X X, et al. Simultaneous quantitation of cytokeratin-19 fragment and carcinoembryonic antigen in human serum via quantum dot-doped nanoparticles[J]. Biosensors and Bioelectronics, 2017, 91:60-65.
[32] Kim D, Kwon H J, Shin K, et al. Multiplexible wash-free immunoassay using colloidal assemblies of magnetic and photoluminescent nanoparticles[J]. ACS Nano, 2017, 11(8):8448-8455.
[33] Lu S, Zhang D S Z, Wei D, et al. Three-dimensional barcodes with ultrahigh encoding capacities:A flexible, accurate, and reproducible encoding strategy for suspension arrays[J]. Chemistry of Materials, 2017, 29(24):10398-10408.
[34] Zavoiura O, Resch-Genger U, Seitz O. Quantum dot-PNA conjugates for target-catalyzed RNA detection[J]. Bioconjugate Chemistry, 2018, 29(5):1690-1702.
[35] Lu B R, He Q H, He Y H, et al. Dual-channel-coded microbeads for multiplexed detection of biomolecules using assembling of quantum dots and element coding nanoparticles[J]. Analytica Chimica Acta, 2018, 1024:153-160.
[36] Wu R L, Wang T Y, Wu M, et al. Synthesis of highly stable CuInZnS/ZnS//ZnS quantum dots with thick shell and its application to quantitative immunoassay[J]. Chemical Engineering Journal, 2018, 348:447-454.
[37] Zhang C Y, Hu J. Single quantum dot-based nanosensor for multiple DNA detection[J]. Analytical Chemistry, 2010, 82(5):1921-1927.
[38] Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nature Material, 2003, 2(9):630-638.
[39] Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nature Biotechnology, 2001, 19(7):631-635.
[40] Giri S, Sykes E A, Jennings T L, et al. Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes[J]. ACS Nano, 2011, 5(3):1580-1587.
[41] Sharon E, Freeman R, Willner I. CdSe/ZnS quantum dotsgquadruplex/hemin hybrids as optical DNA sensors and aptasensors[J]. Analytical Chemistry, 2010, 82(17):7073-7077.
[42] Chi C W, Lao Y H, Li Y S, et al. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter:Application to label-free thrombin detection[J]. Biosensors & Bioelectronics, 2011, 26(7):3346-3352.
[43] Chen K, Chou L Y T, Song F, et al. Fabrication of metal nanoshell quantum-dot barcodes for biomolecular detection[J]. Nano Today, 2013, 8(3):228-234.
[44] Dong J Y, Salem D P, Sun J H, et al. Analysis of multiplexed nanosensor arrays based on near-infrared fluorescent singlewalled carbon nanotubes[J]. ACS Nano, 2018, 12(4):3769-3779.
[45] Pei X J, Yin H Y, Lai T C, et al. Multiplexed detection of attomoles of nucleic acids using fluorescent nanoparticle counting platform[J]. Analytical Chemistry, 2018, 90(2):1376-1383.
[46] Wu S, Li C, Shi H, et al. Design of metal-organic frameworkbased nanoprobes for multicolor detection of DNA targets with improved sensitivity[J]. Analytical Chemistry, 2018, 90(16):9929-9935.
[47] Fang C C, Chou C C, Yang Y Q, et al. Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip[J]. Analytical Chemistry, 2018, 90(3):2134-2140.
[48] Yang M Y, Zhang Y, Cui M H, et al. A smartphone-based quantitative detection platform of mycotoxins based on multiple-color upconversion nanoparticles[J]. Nanoscale, 2018, 10(33):15865-15874.
[49] Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence quenching of dye molecules near gold nanoparticles:Radiative and nonradiative effects[J]. Physical Review Letters, 2002, 89(20):203002.
[50] Maxwell D J, Taylor J R, Nie S. Self-Assembled nanoparticle probes for recognition and detection of biomolecules[J]. Journal of the American Chemical Society, 2002, 124(32):9606-9612.
[51] Samanta A, Zhou Y, Zou S, et al. Fluorescence quenching of quantum dots by gold nanoparticles:A potential long range spectroscopic ruler[J]. Nano Letters, 2014, 14(9):5052-5057.
[52] Xue C, Xue Y, Dai L, et al. Size-and shape-dependent fluorescence quenching of gold nanoparticles on perylene dye[J]. Advanced Optical Materials, 2013, 1(8):581-587.
[53] Dubertret B, Calame M, Libchaber A J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides[J]. Nature Biotechnology, 2001, 19(4):365-370.
[54] Song S, Liang Z, Zhang J, et al. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis[J]. Angewandte Chemie International Edition, 2009, 48(46):8670-8674.
[55] Yeh H Y, Yates M V, Mulchandani A, et al. Molecular beaconequantum dote Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells[J]. Chemical Communications, 2010, 46(22):3914-3916.
[56] Chen L, Neethirajan S. A homogenous fluorescence quenching based assay for specific and sensitive detection of influenza virus a hemagglutinin antigen[J]. Sensors, 2015, 15(4):8852-8865.
[57] He S, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis[J]. Advanced Functional Materials, 2010, 20(3):453-459.
[58] Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules[J]. Angewandte Chemie International Edition, 2009, 121(26):4879-4881.
[59] Ni J, Lipert R J, Dawson G B, et al. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids[J]. Analytical Chemistry, 1999, 71(21):4903-4908.
[60] Sun L, Yu C, Irudayaraj J. Raman multiplexers for alternative gene splicing[J]. Analytical Chemistry, 2008, 80(9):3342e3349.
[61] Hu F H, Zeng C, Long R, et al. Supermultiplexed optical imaging and barcoding with engineered polyynes[J]. Nature Methods, 2018, 15(3):194-200.
[62] Huh Y S, Chung A J, Erickson D. Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis[J]. Microfluidics & Nanofluidics 2009, 6(3):285-297.
[63] Etchegoin P G, Le E C. A perspective on single molecule SERS:Current status and future challenges[J]. Physical Chemistry Chemical Physics, 2008, 10(40):6079-6089.
[64] Kneipp K, Kneipp H, Kartha V B, et al. Detection and identification of a single DNA base molecule using surfaceenhanced Raman scattering (SERS)[J]. Physical Review E, 1998, 57(6):R6281-R6284.
[65] Matteini P, Cottat M, Tavanti F, et al. Site-selective surfaceenhanced Raman detection of proteins[J]. ACS Nano, 2017, 11:918-926.
[66] Liu B, Ni H B, Zhang D, et al. Ultrasensitive detection of protein with wide linear dynamic range based on core-shell SERS nanotags and photonic crystal beads[J]. ACS Sensors, 2017, 2(7):1035-1043.
[67] Guo R Y, Yin F F, Sun Y D, et al. Ultrasensitive simultaneous detection of multiplex disease-related nucleic acids using double-enhanced surface-enhanced Raman scattering nanosensors[J]. ACS Applied Materials & Interfaces, 2018, 10(30):25770-25778.
[68] Li J R, Wang J, Grewal Y S, et al. Multiplexed SERS detection of soluble cancer protein biomarkers with gold-silver alloy nanoboxes and nanoyeast single-chain variable fragments[J]. Analytical Chemistry, 2018, 90:10377-10384.
[69] Huh Y S, Chung A J, Cordovez B, et al. Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells[J]. Lab on a Chip, 2009, 9(3):433-439.
[70] Wabuyele M B, Vo-Dinh T. Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes[J]. Analytical Chemistry, 2005, 77(23):7810-7815.
[71] Xu S, Ji X, Xu W, et al. Immunoassay using probe labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering[J]. Analyst, 2004, 129(1):63-66.
[72] Kong K, Kendall C, Stone N, et al. Raman spectroscopy for medical diagnostics d from in-vitro biofluid assays to in-vivo cancer detection[J]. Advanced Drug Delivery Reviews, 2015, 89:121-134.
[73] Gracie K, Correa E, Mabbott S, et al. Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS[J]. Chemical Science, 2014, 5(3):1030-1040.
[74] Neng J, Harpster M H, Wilson W C, et al. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles[J]. Biosensors & Bioelectronics, 2013, 41(6):316-321.
[75] Breuzard G, Angiboust J F, Jeannesson P, et al. Surface enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells[J]. Biochemical and Biophysical Research Communications, 2004, 320(2):615-621.
[76] Gao Y, Lam A W Y, Chan W C W. Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device[J]. ACS Applied Materials & Interfaces, 2013, 5(8):2853-2860.
[77] Yuan C, Deng Y T, Li X M, et al. Synthesis of monodisperse plasmonic magnetic microbeads and their application in ultrasensitive detection of biomolecules[J]. Analytical Chemistry, 2018, 90(13):8178-8187.
[78] Nam J M, Stoeva S I, Mirkin C A. Bio-bar-code-based DNA detection with PCR-like sensitivity[J]. Journal of the American Chemical Society, 2004, 126(19):5932-5933.
[79] Chung H J, Castro C M, Im H, et al. A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria[J]. Nature Nanotechnology, 2013, 8(5):369-375.
[80] Haun J B, Castro C M, Wang R, et al. Micro-NMR for rapid molecular analysis of human tumor samples[J]. Science Translational Medicine, 2011, 3(71):71ra16.
[81] Lee H, Sun E, Ham D, et al. Chip-NMR biosensor for detection and molecular analysis of cells[J]. Nature Medicine 2008, 14(8):869-874.
[82] Koh I, Hong R, Weissleder R, et al. Sensitive NMR sensors detect antibodies to influenza[J]. Angewandte Chemie International Edition, 2008, 120(22):4187-4189.
[83] Perez J M, Josephson L, O'Loughlin T, et al. Magnetic relaxation switches capable of sensing molecular interactions[J]. Nature Biotechnology, 2002, 20(8):816-820.
[84] Lee H, Yoon T J, Figueiredo J L, et al. Rapid detection and profiling of cancer cells in fine-needle aspirates[J]. PNAS, 2009, 106(30):12459-12464.
[85] Ronkainen N J, Halsall H B, Heineman W R. Electrochemical biosensors[J]. Chemical Society Reviews, 2010, 39(5):1747-1763.
[86] Bauer C G, Eremenko A V, Ehrentreich-Forster E, et al. Zeptomole-detecting biosensor for alkaline phosphatase in an electrochemical immunoassay for 2,4-dichlorophenoxyacetic acid[J]. Analytical Chemistry, 1996, 68(15):2453-2458.
[87] Fu Y, Wang N X, Yang A N, et al. Highly sensitive detection of protein biomarkers with organic electrochemical transistors[J]. Advanced Materials, 2017, 29(41):1703787.
[88] Patolsky F, Zheng G, Hayden O, et al. Electrical detection of single viruses[J]. PNAS, 2004, 101(39):14017-14022.
[89] Kerman K, Saito M, Yamamura S, et al. Nanomaterial based electrochemical biosensors formedical applications[J]. Trends in Analytical Chemistry, 2008, 27(7):585-592.
[90] Rosi N L, Mirkin C A. Nanostructures in biodiagnostics[J]. Chemical Reviews, 2005, 105(4):1547-1562.
[91] Chen R J, Bangsaruntip S, Drouvalakis K A, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors[J]. PNAS, 2003, 100(9):4984-4989.
[92] Wang Y, Ye Z, Ying Y. New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria[J]. Sensors, 2012, 12(3):3449-3471.
[93] Park S J, Taton T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes[J]. Science, 2002, 295(5559):1503-1506.
[94] Idegami K, Chikae M, Kerman K, et al. Gold nanoparticlebased redox signal enhancement for sensitive detection of human chorionic gonadotropin hormone[J]. Electroanalysis, 2008, 20(1):14-21.
[95] Liu G, Lee T M H, Wang J. Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms[J]. Journal of the American Chemical Society, 2005, 127(1):38-39.
[96] Pires N, Dong T, Hanke U, et al. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications[J]. Sensors, 2014, 14(8):15458-15479.
[97] Reynolds R A, Mirkin C A, Letsinger R L. Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides[J]. Journal of the American Chemical Society, 2016, 122(15):3795-3796.
[98] Vilela D, González M C, Escarpa A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation:Chemical creativity behind the assay. A review[J]. Analytica Chimica Acta, 2012, 751(21):24-43.
[99] Kim J H, Park J E, Lin M H, et al. Sensitive, quantitative naked-eye biodetection with polyhedral Cu nanoshells[J]. Advanced Materials, 2017, 29(37):1702945.
[100] Verma M S, Rogowski J L, Jones L, et al. Colorimetric biosensing of pathogens using gold nanoparticles[J]. Biotechnology Advances, 2015, 33(6):666-680.
[101] Chan W S, Tang B S F, Boost M V, et al. Detection of methicillin-resistant Staphylococcus aureus using a gold nanoparticle-based colourimetric polymerase chain reaction assay[J]. Biosensors & Bioelectronics, 2013, 53(6):105-111.
[102] Jung C, Chung J W, Kim U O, et al. Real-time colorimetric detection of target DNA using isothermal target and signaling probe amplification and gold nanoparticle cross-linking assay[J]. Biosensors & Bioelectronics, 2011, 26(5):1953-1958.
[103] Carter J R, Balaraman V, Kucharski C A, et al. A novel dengue virus detection method that couples DNA zyme and gold nanoparticle approaches[J]. Virology Journal, 2013, 10(1):1-15.
[104] Zagorovsky K, Chan W C W. A plasmonic DNAzyme strategy for point-of-care genetic detection of infectious pathogens[J]. Angewandte Chemie International Edition, 2013, 52(11):3168-3171.
[105] Zhang S, Guo W, Wei J, et al. Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy[J]. ACS Nano, 2017, 11(4):3797-3805.
[106] Pelaz B, Alexiou C, Alvarez-Puebla R A, et al. Diverse applications of nanomedicine[J]. ACS Nano, 2017, 11(3):2313-2381.
[107] Raeesi V, Chou L Y T, Chan W C W. Tuning the drug loading and release of DNA-assembled gold-nanorod superstructures[J]. Advanced Materials, 2016, 28(38):8511-8518.
[108] Govorov A O, Richardson H H. Generating heat with metal nanoparticles[J]. Nano Today 2007, 2(1):30-38.
[109] Qin Z, Chan W C W, Boulware D R, et al. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast[J]. Angewandte Chemie International Edition, 2012, 51(18):4358-4361.
[110] Wang Y, Qin Z, Boulware D R, et al. Thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays[J]. Analytical Chemistry, 2016, 88(23):11774-11782.
[111] Cheng L, Wang C, Feng L, et al. Functional nanomaterials for phototherapies of cancer[J]. Chemical Reviews, 2014, 114(21):10869-10939.
Outlines

/