[1] Veiseh O, Kievit F M, Ellenbogen R G, et al. Cancer cell invasion:Treatment and monitoring opportunities in nanomedicine[J]. Advanced Drug Delivery Review, 2011, 63(8):582-596.
[2] Sun Q H, Zhou Z X, Qiu N S, et al. Rational design of cancer nanomedicine:Nanoproperty integration and synchronization[J]. Advanced Materials, 2017, 29(14):1606628.
[3] Gu X G, Kwok R T K, Lam J W Y, et al. Aiegens for biological process monitoring and disease theranostics[J]. Biomaterials, 2017, 146:115-135.
[4] Gu Z, Chen X Y. Towards enhancing skin drug delivery[J]. Advanced Drug Delivery Reviews, 2018, 127:1-2.
[5] Liu D, Yang F, Xiong F, et al. The smart drug delivery system and its clinical potential[J]. Theranostics, 2016, 6(9):1306-1323.
[6] Zhu G Z, Zhang F W, Ni Q Q, et al. Efficient nanovaccine delivery in cancer immunotherapy[J]. ACS Nano, 2017, 11(3):2387-2392.
[7] Guo Y, Wang D, Song Q, et al. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma[J]. ACS Nano, 2015, 9(7):6918-6933.
[8] Chattopadhyay S, Dash S K, Mandal D, et al. Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine[J]. Vaccine, 2016, 34(7):957-967.
[9] Shi G N, Zhang C N, Xu R, et al. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine[J]. Biomaterials, 2017, 113:191-202.
[10] Kuai R, Ochyl L J, Bahjat K S, et al. Designer vaccine nanodiscs for personalized cancer immunotherapy[J]. Nature Materials, 2016, 16:489.
[11] Luo M, Wang H, Wang Z H, et al. A STING-activating nanovaccine for cancer immunotherapy[J]. Nature Nanotechnology, 2017, 12(7):648-654.
[12] Zhao T, Huang G, Li Y, et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery[J]. Nature Biomedical Engineering, 2016, 1(1):6.
[13] Liu C H, Qi F P, Wen F B, et al. Fluorescence detection of glutathione (GSH) and oxidized glutathione (GSSG) in blood with a NIR-excitable cyanine probe[J]. Methods and Applications in Fluorescence, 2017, 25(4):580-586.
[14] Cui J B, Jiang R, Guo C, et al. Fluorine grafted Cu7S4-Au heterodimers for multimodal imaging guided photothermal therapy with high penetration depth[J]. Journal of the American Chemical Society, 2018, 140(18):5890-5894.
[15] Ye D Y, Shuhendler A J, Cui L N, et al. Bioorthogonal cyclizationmediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo[J]. Nature Chemistry, 2014, 6(6):519-526.
[16] Haun J B, Castro C M, Wang R, et al. Micro-NMR for rapid molecular analysis of human tumor samples[J]. Science Translational Medicine, 2011, 3(71):71ra16.
[17] Rizzi G, Lee J R, Dahl C, et al. Simultaneous profiling of DNA mutation and methylation by melting analysis using magnetoresistive biosensor array[J]. ACS Nano, 2017, 11(9):8864-8870.
[18] Zhao X, Guo B L, Wu H, et al. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing[J]. Nature Communications, 2018, 9(1):2784.
[19] Mahalingam S M, Kularatne S A, Myers C H, et al. Evaluation of novel tumor-targeted near-infrared probe for fluorescence-guided surgery of cancer[J]. Journal of Medicinal Chemistry, 2018, 61(21):9637-9646.
[20] Lu Y, Aimetti A A, Langer R, et al. Bioresponsive materials[J]. Nature Reviews Materials, 2016, 2:16075.
[21] Luo M, Feng Y Z, Wang T W, et al. Micro-/nanorobots at work in active drug delivery[J]. Advanced Functional Materials, 2018, 28(25):1706100.
[22] Ju C Y, Mo R, Xue J W, et al. Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration[J]. Angewandte Chemie International Edition, 2014, 53(24):6253-6258.
[23] Sivak L, Subr V, Tomala J, et al. Overcoming multidrug resistance via simultaneous delivery of cytostatic drug and P-glycoprotein inhibitor to cancer cells by HPMA copolymer conjugate[J]. Biomaterials, 2017, 115:65-80.
[24] Fan K L, Jia X H, Zhou M, et al. Ferritin nanocarrier traverses the blood brain barrier and kills glioma[J]. ACS Nano, 2018, 12(5):4105-4115.
[25] Liang X L, Gao C, Cui L, et al. Self-assembly of an amphiphilic janus camptothecin-floxuridine conjugate into liposomelike nanocapsules for more efficacious combination chemotherapy in cancer[J]. Advanced Materials, 2017, 29(40):1703135.
[26] Lin T T, Zhao P F, Jiang Y F, et al. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy[J]. ACS Nano, 2016, 10(11):9999-10012.
[27] Fan W P, Bu W B, Zhang Z, et al. X-ray radiation-controlled norelease for on-demand depth-independent hypoxic radiosensitization[J]. Angewandte Chemie International Edition, 2015, 54(47):14026-14030.
[28] Fan W P, Yung B, Huang P, et al. Nanotechnology for multimodal synergistic cancer therapy[J]. Chemical Reviews, 2017, 117(22):13566-13638.
[29] Song G S, Ji C H, Liang C, et al. TaOx decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy[J]. Biomaterials, 2017, 112:257-263.
[30] Du J, Gu Z, Yan L, et al. Poly(Vinylpyrollidone)-and selenocysteine-modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues[J]. Advanced Materials, 2017, 29(34):1701268.
[31] Yu C Y Y, Xu H, Ji S, et al. Mitochondrion-anchoring photosensitizer with aggregation-induced emission characteristics synergistically boosts the radiosensitivity of cancer cells to ionizing radiation[J]. Advanced Materials, 2017, 29(15):1606167.
[32] Yuan H X, Chong H, Wang B, et al. Chemical molecule-induced light-activated system for anticancer and antifungal activities[J]. Journal of the American Chemical Society, 2012, 134(32):13184-13187.
[33] Li A, Li X, Yu X J, et al. Synergistic thermoradiotherapy based on PEGylated Cu3BiS3 ternary semiconductor nanorods with strong absorption in the second near-infrared window[J]. Biomaterials, 2017, 112:164-175.
[34] Li R Y, Zhang L B, Shi L, et al. Mxene Ti3C2:An effective 2D light-to-heat conversion material[J]. ACS Nano, 2017, 11(4):3752-3759.
[35] Wang L, Gao C, Liu K Y, et al. Cypate-conjugated porous upconversion nanocomposites for programmed delivery of heat shock protein 70 small interfering RNA for gene silencing and photothermal ablation[J]. Advanced Functional Materials, 2016, 26(20):3480-3489.
[36] Yang Y, Zhu W J, Dong Z L, et al. 1D coordination polymer nanofibers for low-temperature photothermal therapy[J]. Advanced Materials, 2017, 29(40):1703588.
[37] Dong Q, Wang X W, Hu X X, et al. Simultaneous application of photothermal therapy and an anti-inflammatory prodrug using pyrene-aspirin-loaded gold nanorod graphitic nanocapsules[J]. Angewandte Chemie International Edition, 2017, 57(1):177-181.
[38] Chatterjee D K, Fong L S, Zhang Y. Nanoparticles in photodynamic therapy:An emerging paradigm[J]. Advanced Drug Delivery Reviews, 2008, 60(15):1627-1637.
[39] Idris N M, Gnanasammandhan M K, Zhang J, et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers[J]. Nature Medicine, 2012, 18(10):1580-1585.
[40] Xu J, Xu L G, Wang C Y, et al. Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer[J]. ACS Nano, 2017, 11(5):4463-4474.
[41] Wang C, Ye Y Q, Hu Q Y, et al. Tailoring biomaterials for cancer immunotherapy:Emerging trends and future outlook[J]. Advanced Materials, 2017, 29(29):1606036.
[42] Fan Q, Chen Z, Wang C, et al. Toward biomaterials for enhancing immune checkpoint blockade therapy[J]. Advanced Functional Materials, 2018, 28(37):1802540.
[43] Kelly S H, Shores L S, Votaw N L, et al. Biomaterial strategies for generating therapeutic immune responses[J]. Advanced Drug Delivery Reviews, 2017, 114:3-18.
[44] Wang C, Ye Y Q, Hochu G M, et al. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of antiPD1 antibody[J]. Nano Letters, 2016, 16(4):2334-2340.
[45] Li A W, Sobral M C, Badrinath S, et al. A facile approach to enhance antigen response for personalized cancer vaccination[J]. Nature Materials, 2018, 17(6):528-534.
[46] Lizotte P H, Wen A M, Sheen M R, et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer[J]. Nature Nanotechnology, 2015, 11(3):295-303.
[47] Wang C, Wang J Q, Zhang X D, et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy[J]. Science Translational Medicine, 2018, 10(429):eaan3682.
[48] Min Y Z, Roche K C, Tian S M, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy[J]. Nature Nanotechnology, 2017, 12(9):877-882.
[49] Chao Y, Xu L G, Liang C, et al. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses[J]. Nature Biomedical Engineering, 2018, 2(8):611-621.
[50] Lu K D, He C B, Guo N, et al. Low-dose X-ray radiotherapyradiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy[J]. Nature Biomedical Engineering, 2018:1-11.
[51] Zhu G Z, Mei L, Vishwasrao H D, et al. Intertwining DNARNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy[J]. Nature Communications, 2017, 8(1):1482.
[52] Huang J L, Jiang G, Song Q X, et al. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis[J]. Nature Communications, 2017, 8:15144.
[53] Huang W, Chen L Q, Kang L, et al. Nanomedicine-based combination anticancer therapy between nucleic acids and smallmolecular drugs[J]. Advanced Drug Delivery Reviews, 2017, 115:82-97.
[54] Wang H X, Li M, Lee C M, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy:Challenges and opportunities for nonviral delivery[J]. Chemical Reviews, 2017, 117(15):9874-9906.
[55] Wang P, Zhang L, Zheng W, et al. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy[J]. Angewandte Chemie International Edition, 2018, 57(6):1491-1496.
[56] Dong Y C, Yang Y H, Zhang Y Y, et al. Cuboid vesicles formed by frame-guided assembly on DNA origami scaffolds[J]. Angewandte Chemie International Edition, 2017, 56(6):1586-1589.
[57] Ren K W, Liu Y, Wu J, et al. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery[J]. Nature Communications, 2016, 7:13580.
[58] Li S P, Jiang Q, Liu S L, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo[J]. Nature Biotechnology, 2018, 36(3):258-264.
[59] Curley S A, Izzo F, Delrio P, et al. Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies:Results in 123 patients[J]. Annals of Surgery, 1999, 230(1):1.
[60] Rejinold N S, Jayakumar R, Kim Y C. Radio frequency responsive nano-biomaterials for cancer therapy[J]. Journal of Controlled Release, 2015, 204:85-97.
[61] Zhang K, Li P, Chen H R, et al. Continuous cavitation designed for enhancing radiofrequency ablation via a special radiofrequency solidoid vaporization process[J]. ACS Nano, 2016, 10(2):2549-2558.
[62] Jordan A, Scholz R, Wust P, et al. Magnetic fluid hyperthermia (MFH):Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 1999, 201(1):413-419.
[63] Kumar C S S R, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery[J]. Advanced Drug Delivery Reviews, 2011, 63(9):789-808.
[64] Liu X L, Yang Y, Ng C T, et al. Magnetic vortex nanorings:A new class of hyperthermia agent for highly efficient in vivo regression of tumors[J]. Advanced Materials, 2015, 27(11):1939-1944.
[65] Jang J T, Lee J, Seon J, et al. Giant magnetic heat induction of magnesium-doped γ-Fe2O3 superparamagnetic nanoparticles for completely killing tumors[J]. Advanced Materials, 2017, 30(6):1704362.
[66] Kennedy J E. High-intensity focused ultrasound in the treatment of solid tumours[J]. Nature Reviews Cancer, 2005, 5:321.
[67] Chen Y, Chen H R, Shi J L. Nanobiotechnology promotes noninvasive high-intensity focused ultrasound cancer surgery[J]. Advanced Healthcare Materials, 2014, 4(1):158-165.
[68] Wang X, Chen H R, Chen Y, et al. Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU)[J]. Advanced Materials, 2012, 24(6):785-791.
[69] He S S, Li C, Zhang Q F, et al. Tailoring platinum(IV) amphiphiles for self-targeting all-in-one assemblies as precise multimodal theranostic nanomedicine[J]. ACS Nano, 2018, 12(7):7272-7281.
[70] Wei Q L, Chen Y, Ma X B, et al. High-efficient clearable nanoparticles for multi-modal imaging and image-guided cancer therapy[J]. Advanced Functional Materials, 2018, 28(2):1704634.
[71] Lin J, Wang M, Hu H, et al. Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and γ-irradiation protection[J]. Advanced Materials, 2016, 28(17):3273-3279.
[72] Chen Y Y, Cheng L, Dong Z L, et al. Degradable vanadium disulfide nanostructures with unique optical and magnetic functions for cancer theranostics[J]. Angewandte Chemie, 2017, 129(42):13171-13176.
[73] Yang G B, Xu L G, Chao Y, et al. Hollow MnO2 as a tumormicro environment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses[J]. Nature Communications, 2017, 8(1):902.
[74] Min Y, Caster J M, Eblan M J, et al. Clinical translation of nanomedicine[J]. Chemical Reviews, 2015, 115(19):11147-11190.
[75] Von Roemeling C, Jiang W, Chan C K, et al. Breaking down the barriers to precision cancer nanomedicine[J]. Trends in Biotechnology, 2017, 35(2):159-171.
[76] Nel A, Ruoslahti E, Meng H. New insights into "permeability" as in the enhanced permeability and retention effect of cancer nanotherapeutics[J]. ACS Nano, 2017, 11(10):9567-9569.
[77] Pelaz B, Alexiou C, Alvarez-Puebla R A, et al. Diverse applications of nanomedicine[J]. ACS Nano, 2017, 11(3):2313-2381.