Research progress in novel bio-inspired intelligent materials

  • LIANG Xiubing ,
  • CUI Xin ,
  • HU Zhenfeng ,
  • TU Long
  • 1. Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Academy of Military Sciences, Beijing 100071, China;
    2. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2018-05-16

  Revised date: 2018-08-20

  Online published: 2018-12-14


This paper reviews the major research progress in designing, preparing and optimizing the bio-inspired intelligent materials in a variety of engineering applications such as anti-icing, marine anti-fouling, self-healing, infrared stealth and underwater adhesives, and the associated bionic principles are discussed as well. Finally, the outlook and prospect of this field are also addressed. As a solid bridge between fundamental researches and practical applications, the development of bio-inspired intelligent materials will definitely provide novel ideas, theories and strategies to meet the requirements for the multifunctional and structural-functional integrated materials and to solve the current technological problems in many scientific and engineering fields, which is of great importance in accelerating the innovation of science and technology.

Cite this article

LIANG Xiubing , CUI Xin , HU Zhenfeng , TU Long . Research progress in novel bio-inspired intelligent materials[J]. Science & Technology Review, 2018 , 36(22) : 131 -144 . DOI: 10.3981/j.issn.1000-7857.2018.22.012


[1] 刘克松, 江雷. 仿生结构及其功能材料研究进展[J]. 科学通报, 2009, 54(18):2667-2681. Liu Kesong, Jiang Lei. Research progres on biomimetic structural and functional materials[J]. Chinese Science Bulletin, 2009, 54(18):2667-2681.
[2] 江雷, 冯琳. 仿生智能纳米界面材料[M]. 北京:化学工业出版社, 2016. Jiang Lei, Feng Lin. Bioinspired intelligent nanostructured interfacial materials[M]. Beijing:Chemical Industry Press, 2016.
[3] Shoseyov O, Levy I. Nanobiotechnology:Bioinspired devices and materials of the future[M]. New Jersey:Humana Press, 2008.
[4] 王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料[J]. 物理学报, 2016, 65(18):186801. Wang Pengwei, Liu Mingjie, Jiang Lei. Bioinspired multiscale interfacial materials with superwettability[J]. Acta Physica Sinica, 2016, 65(18):186801.
[5] Mishchenko L, Hatton B, Bahadur V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12):7699-7707.
[6] Wang Y, Xue J, Wang Q, et al. Verification of icephobic/antiicing properties of a superhydrophobic surface[J]. ACS Applied Materials & Interfaces, 2013, 5(8):3370-3381.
[7] Lv J, Song Y, Jiang L, et al. Bio-inspired strategies for anti-icing[J]. ACS Nano, 2014, 8(4):3152-3169.
[8] Kreder M J, Alvarenga J, Kim P, et al. Design of anti-icing surfaces:smooth, textured or slippery[J/OL]. Nature Reviews Materials, 2016, 1(1):15003.
[9] Peng C, Chen Z, Tiwari M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials, 2018, 17(4):355-360.
[10] Narhe R, Beysens D. Nucleation and growth on a superhydrophobic grooved surface[J]. Physical Review Letters, 2004, 93(7):076103.
[11] Lafuma A, Quéré D. Superhydrophobic states[J]. Nature Materials, 2003, 2(7):457-460.
[12] Jung S, Tiwari M K, Doan N V, et al. Mechanism of supercooled droplet freezing on surfaces[J/OL]. Nature Communications, 2012, 3:615.
[13] Nosonovsky M, Hejazi V. Why superhydrophobic surfaces are not always icephobic[J]. ACS Nano, 2012, 6(10):8488-8491.
[14] Dou R, Chen J, Zhang Y, et al. Anti-icing coating with an aqueous lubricating layer[J]. ACS Applied Materials & Interfaces, 2014, 6(10):6998-7003.
[15] Chen J, Luo Z, Fan Q, et al. Anti-ice coating inspired by ice skating[J]. Small, 2014, 10(22):4693-4699.
[16] Chen J, Dou R, Cui D, et al. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate[J]. ACS Applied Materials & Interfaces, 2013, 5(10):4026-4030.
[17] He Z, Xie W J, Liu Z, et al. Tuning ice nucleation with counterions on polyelectrolyte brush surfaces[J/OL]. Science Advances, 2016, 2(6):e1600345.
[18] Wilson P W, Lu W, Xu H, et al. Inhibition of ice nucleation by slippery liquid-infused porous surfaces(SLIPS)[J]. Physical Chemistry Chemical Physics, 2013, 15(2):581-585.
[19] Zhu L, Xue J, Wang Y, et al. Ice-phobic coatings based on silicon-oil-infused polydimethylsiloxane[J]. ACS Applied Materials & Interfaces, 2013, 5(10):4053-4062.
[20] Kim P, Wong T S, Alvarenga J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8):6569-6577.
[21] Wong T S, Kang S H, Tang S K, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365):443-447.
[22] Vogel N, Belisle R A, Hatton B, et al. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers[J/OL]. Nature Communications, 2013, 4:2176.
[23] Ding X, Yang C, Lim T P, et al. Antibacterial and antifouling catheter coatings using surface grafted peg-b-cationic polycarbonate diblock copolymers[J]. Biomaterials, 2012, 33(28):6593-6603.
[24] Statz A R, Meagher R J, Barron A E, et al. New peptidomimetic polymers for antifouling surfaces[J]. Journal of the American Chemical Society, 2005, 127(22):7972-7973.
[25] Rana D, Matsuura T. Surface modifications for antifouling membranes[J]. Chemical Reviews, 2010, 110(4):2448-2471.
[26] Dalsin J L, Messersmith P B. Bioinspired antifouling polymers[J]. Materials Today, 2005, 8(9):38-46.
[27] Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers[J]. Angewandte Chemie International Edition, 2014, 53(7):1746-1754.
[28] Jiang S, Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications[J]. Advanced Materials, 2010, 22(9):920-932.
[29] Chen S, Li L, Zhao C, et al. Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23):5283-5293.
[30] Shi C, Yan B, Xie L, et al. Long-range hydrophilic attraction between water and polyelectrolyte surfaces in oil[J]. Angewandte Chemie International Edition, 2016, 55(48):15017-15021.
[31] He K, Duan H, Chen G Y, et al. Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings:Overcoming the imperative challenge of oil-water separation membranes[J]. ACS Nano, 2015, 9(9):9188-9198.
[32] Kirschner C M, Brennan A B. Bio-inspired antifouling strategies[J]. Annual Review of Materials Research, 2012, 42:211-229.
[33] Scardino A J, De Nys R. Mini review:Biomimetic models and bioinspired surfaces for fouling control[J]. Biofouling, 2011, 27(1):73-86.
[34] Callow J A, Callow M E. Trends in the development of environmentally friendly fouling-resistant marine coatings[J/OL]. Nature Communications, 2011, 2:244.
[35] Epstein A K, Wong T-S, Belisle R A, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance[J]. Proceedings of the National Academy of Sciences, 2012, 109(33):13182-13187.
[36] Xiao L, Li J, Mieszkin S, et al. Slippery liquid-infused porous surfaces showing marine antibiofouling properties[J]. ACS Applied Materials & Interfaces, 2013, 5(20):10074-10080.
[37] Wang P, Zhang D, Lu Z, et al. Fabrication of slippery lubricant-infused porous surface for inhibition of microbially influenced corrosion[J]. ACS Applied Materials & Interfaces, 2016, 8(2):1120-1127.
[38] Amini S, Kolle S, Petrone L, et al. Preventing mussel adhesion using lubricant-infused materials[J]. Science, 2017, 357(6352):668-673.
[39] Chen S, Ma C, Zhang G. Biodegradable polymer as controlled release system of organic antifoulant to prevent marine biofouling[J]. Progress in Organic Coatings, 2017, 104:58-63.
[40] Xie Q, Zhou X, Ma C, et al. Self-cross-linking degradable polymers for antifouling coatings[J]. Industrial & Engineering Chemistry Research, 2017, 56(18):5318-5324.
[41] Xie Q, Ma C, Zhang G, et al. Poly (ester)-poly (silyl methacrylate) copolymers:Synthesis and hydrolytic degradation kinetics[J]. Polymer Chemistry, 2018, 9(12):1448-1454.
[42] Chen S, Ma C, Zhang G. Biodegradable polymers for marine antibiofouling:Poly (ε-caprolactone)/poly (butylene succinate) blend as controlled release system of organic antifoulant[J]. Polymer, 2016, 90:215-221.
[43] Zhou X, Xie Q, Ma C, et al. Inhibition of marine biofouling by use of degradable and hydrolyzable silyl acrylate copolymer[J]. Industrial & Engineering Chemistry Research, 2015, 54(39):9559-9565.
[44] Xie Q, Xie Q, Pan J, et al. Biodegradable polymer with hydrolysis-induced zwitterions for antibiofouling[J]. ACS Applied Materials & Interfaces, 2018, 10(13):11213-11220.
[45] Cui J, Daniel D, Grinthal A, et al. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing[J]. Nature Materials, 2015, 14(8):790.
[46] Ying H, Zhang Y, Cheng J. Dynamic urea bond for the design of reversible and self-healing polymers[J/OL]. Nature Communications, 2014, 5:3218.
[47] Canadell J, Goossens H, Klumperman B. Self-healing materials based on disulfide links[J]. Macromolecules, 2011, 44(8):2536-2541.
[48] Oehlenschlaeger K K, Mueller J O, Brandt J, et al. Adaptable hetero diels-alder networks for fast self-healing under mild conditions[J]. Advanced Materials, 2014, 26(21):3561-3566.
[49] Roy N, Bruchmann B, Lehn J M. Dynamers:Dynamic polymers as self-healing materials[J]. Chemical Society Reviews, 2015, 44(11):3786-3807.
[50] Wei Z, Yang J H, Zhou J, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications[J]. Chemical Society Reviews, 2014, 43(23):8114-8131.
[51] Yan B, Huang J, Han L, et al. Duplicating dynamic strainstiffening behavior and nanomechanics of biological tissues in a synthetic self-healing flexible network hydrogel[J]. ACS Nano, 2017, 11(11):11074-11081.
[52] Yan X, Liu Z, Zhang Q, et al. Quadruple H-bonding crosslinked supramolecular polymeric materials as substrates for stretchable, antitearing, and self-healable thin film electrodes[J]. Journal of the American Chemical Society, 2018, 140(15):5280-5289.
[53] Burattini S, Greenland B W, Merino D H, et al. A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions[J]. Journal of the American Chemical Society, 2010, 132(34):12051-12058.
[54] Li L, Yan B, Yang J, et al. Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property[J]. Advanced Materials, 2015, 27(7):1294-1299.
[55] Cordier P, Tournilhac F, Soulié-Ziakovic C, et al. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature, 2008, 451(7181):977-980.
[56] Lin Y, Li G. An intermolecular quadruple hydrogen-bonding strategy to fabricate self-healing and highly deformable polyurethane hydrogels[J]. Journal of Materials Chemistry B, 2014, 2(39):6878-6885.
[57] Holten-Andersen N, Harrington M J, Birkedal H, et al. Ph-induced metal-ligand cross-links inspired by mussel yield selfhealing polymer networks with near-covalent elastic moduli[J]. Proceedings of the National Academy of Sciences, 2011, 108(7):2651-2655.
[58] Fages F. Metal coordination to assist molecular gelation[J]. Angewandte Chemie International Edition, 2006, 45(11):1680-1682.
[59] Mozhdehi D, Ayala S, Cromwell O R, et al. Self-healing multiphase polymers via dynamic metal-ligand interactions[J]. Journal of the American Chemical Society, 2014, 136(46):16128-16131.
[60] Li C H, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer[J]. Nature Chemistry, 2016, 8(6):618-624.
[61] Phan L, Walkup W G, Ordinario D D, et al. Reconfigurable infrared camouflage coatings from a cephalopod protein[J]. Advanced Materials, 2013, 25(39):5621-5625.
[62] Phan L, Ordinario D D, Karshalev E, et al. Infrared invisibility stickers inspired by cephalopods[J]. Journal of Materials Chemistry C, 2015, 3(25):6493-6498.
[63] Phan L, Kautz R, Leung E M, et al. Dynamic materials inspired by cephalopods[J]. Chemistry of Materials, 2016, 28(19):6804-6816.
[64] Xu C, Stiubianu G T, Gorodetsky A A. Adaptive infrared-reflecting systems inspired by cephalopods[J]. Science, 2018, 359(6383):1495-1500.
[65] Zhao N, Wang Z, Cai C, et al. Bioinspired materials:From low to high dimensional structure[J]. Advanced Materials, 2014, 26(41):6994-7017.
[66] Tao P, Shang W, Song C, et al. Bioinspired engineering of thermal materials[J]. Advanced Materials, 2015, 27(3):428-463.
[67] Cui Y, Gong H, Wang Y, et al. A thermally insulating textile inspired by polar bear hair[J/OL]. Advanced Materials, 2018, 30(14):1706807.
[68] Li S C, Chu L N, Gong X Q, et al. Hydrogen bonding controls the dynamics of catechol adsorbed on a tio2(110) surface[J]. Science, 2010, 328(5980):882-884.
[69] Zeng H, Hwang D S, Israelachvili J N, et al. Strong reversible Fe-3+ mediated bridging between dopa-containing protein films in water[J]. Proceedings of the National Academy of Sciences, 2010, 107(29):12850-12853.
[70] Narkar A R, Barker B, Clisch M, et al. Ph responsive and oxidation resistant wet adhesive based on reversible catechol-boronate complexation[J]. Chemistry of Materials, 2016, 28(15):5432-5439.
[71] Salonen L M, Ellermann M, Diederich F. Aromatic rings in chemical and biological recognition:Energetics and structures[J]. Angewandte Chemie International Edition, 2011, 50(21):4808-4842.
[72] Gebbie M A, Wei W, Schrader A M, et al. Tuning underwater adhesion with cation-π interactions[J]. Nature Chemistry, 2017, 9(5):473-479.
[73] Hofman A H, Van Hees I A, Yang J, et al. Bioinspired underwater adhesives by using the supramolecular toolbox[J/OL]. Advanced Materials, 2018, 30(19):1804640.
[74] Li L, Zeng H. Marine mussel adhesion and bio-inspired wet adhesives[J]. Biotribology, 2016, 5:44-51.
[75] Ahn B K. Perspectives on mussel-inspired wet adhesion[J]. Journal of the American Chemical Society, 2017, 139(30):10166-10171.
[76] Maier G P, Rapp M V, Waite J H, et al. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement[J]. Science, 2015, 349(6248):628-632.
[77] Wilker J J. Positive charges and underwater adhesion[J]. Science, 2015, 349(6248):582-583.
[78] Rapp M V, Maier G P, Dobbs H A, et al. Defining the catechol-cation synergy for enhanced wet adhesion to mineral surfaces[J]. Journal of the American Chemical Society, 2016, 138(29):9013-9016.
[79] North M A, Del Grosso C A, Wilker J J. High strength underwater bonding with polymer mimics of mussel adhesive proteins[J]. ACS Applied Materials & Interfaces, 2017, 9(8):7866-7872.
[80] Lim C, Huang J, Kim S, et al. Nanomechanics of poly (catecholamine) coatings in aqueous solutions[J]. Angewandte Chemie International Edition, 2016, 55(10):3342-3346.
[81] Shao H, Stewart R J. Biomimetic underwater adhesives with environmentally triggered setting mechanisms[J]. Advanced Materials, 2010, 22(6):729-733.
[82] Zhao Q, Lee D W, Ahn B K, et al. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange[J]. Nature Materials, 2016, 15(4):407-412.
[83] Zhao Y, Wu Y, Wang L, et al. Bio-inspired reversible underwater adhesive[J/OL]. Nature Communications, 2017, 8:2218.
[84] Dai X, Sun N, Nielsen S O, et al. Hydrophilic directional slippery rough surfaces for water harvesting[J/OL]. Science Advances, 2018, 4(3):eaaq0919.
[85] Qi X, Zhang D, Ma Z, et al. An epidermis-like hierarchical smart coating with a hardness of tooth enamel[J]. ACS Nano, 2018, 12(2):1062-1073.
[86] Qin M, Sun M, Bai R, et al. Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing[J/OL]. Advanced Materials, 2018, 30(21):1800468.
[87] Lv J A, Liu Y, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators[J]. Nature, 2016, 537(7619):179-184.