[1] 杨文杰, 周志刚, 雷欢, 等. 基于GraphX的社交网络用户推荐算法研究[J]. 自动化与信息工程, 2018, 39(1):27-31. Yang Wenjie, Zhou Zhigang, Lei Huan, et al. Research on recommendation algorithm for social network users based on GraphX[J]. Automation & Information Engineering, 2018, 39(1):27-31.
[2] 林友芳, 王天宇, 唐锐, 等. 一种有效的社会网络社区发现模型和算法[J]. 计算机研究与发展, 2012, 49(2):337-345. Lin Youfang, Wang Tianyu, Tang Rui, et, al. An effective model and algorithm for community detection in social networks[J]. Journal of Computer Research and Development, 2012, 49(2):337-345.
[3] 李镇. 基于Spark的大规模社交网络社区发现算法设计与实现[D]. 扬州:扬州大学, 2015. Li Zhen. Design and implementation of community detection algorithm based on spark[D]. Yangzhou:Yangzhou University, 2015.
[4] 梁晋, 梁吉业, 赵兴旺. 一种面向大规模社会网络的社区发现算法[J]. 南京大学学报, 2016, 52(1):159-166. Liang Jin, Liang Jiye, Zhao Xingwang. A community detection algorithm for large social network[J]. Journal of Nanjing University, 2016, 52(1):159-166.
[5] Zhu Xiaojin, Ghahramani Zoubin. Learning from labeled and unlabeled data with label propagation[R]. Pittsburgh:Carnegie Mellon University, 2002.
[6] 张俊丽, 常艳丽, 师文. 标签传播算法理论及其应用研究综述[J]. 计算机应用研究, 2013, 30(1):21-25. Zhang Junli, Chang yanli, Shi Wen. Overview on label propagation algorithm and applications[J]. Application Research of Computers, 2013, 30(1):21-25.
[7] 张素琪, 高星, 霍士杰, 等. 基于速度优化和社区偏向的标签传播算法[J]. 数据分析与知识发现, 2018, 2(3):60-69. Zhang Suqi, Gao Xing, Huo Shijie, et al. A label propagation algorithm based on speed optimization and community preference[J]. Data Analysis and Knowledge Discovery, 2018, 2(3):60-69.
[8] 胡俊, 胡贤德, 程家兴. 基于Spark的大数据混合计算模型[J]. 计算机系统应用, 2015, 24(4):214-218. Hu jun, Hu Xiande, Cheng Jiaxing. Big data hybrid computing mode based on Spark[J]. Computer Systems & Applications, 2015, 24(4):214-218.
[9] 杨天晴, 王津, 杨旭涛, 等. 一种Spark环境下的高效率大规模图数据处理机制[J]. 计算机应用研究, 2016, 33(12):3730-3747. Yang Tianqing, Wang Jing, Yang Xutao, et al. High efficiency large-scale graph data processing mechanism in environment of Spark[J]. Application Research of Computers, 2016, 33(12):3730-3747.
[10] 戴俊, 朱晓民. 基于ActiveMQ的异步消息总线的设计与实现[J]. 计算机系统应用, 2010, 19(8):254-257. Dai Jun, Zhu Xiaomin. Design and implementation of an asynchronous message bus based on ActiveMQ[J]. Computer Systems & Applications, 2010, 19(8):254-257.
[11] Domingos P M, Pazzani M J. On the optimality of the simple bayesian classifier under zero-one loss[J]. Machine Learning, 1997, 29(2):103-130.
[12] 陈湘辉. 基于朴素贝叶斯算法的社交网络数据挖掘技术研究[J]. 计算机测量与控制, 2017, 25(6):199-202. Chen Xianghui. Social networks data mining technology research based on naive bayes algorithm[J]. Computer Measurement & Control, 2017, 25(6):199-202.
[13] 张东亮, 董礼. 基于改进的朴素贝叶斯算法在垃圾短信过滤中的研究[J]. 计算机测量与控制, 2012, 20(2):526-528. Zhang Dongliang, Dong Li. Research of sms spam filtering based on optimized naïve Bayesian algorithm[J]. Henan Science, 2012, 20(2):526-528.
[14] 刘磊, 陈兴蜀, 尹学渊, 等. 基于特征加权朴素贝叶斯分类算法的网络用户识别[J]. 计算机应用, 2011, 31(12):3268-3270. Liu Lei, Chen Xingshu, Yin Xueyuan, et al. Network user identification based feature weighting naive bayesian classification algorithm[J]. Journal of Computer Applications, 2011, 31(12):3268-3270.
[15] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016:150-151. Zhou Zhihua. Machine learning[M]. Beijing:Tsinghua University Press, 2016:150-151.
[16] 李彦广. 基于Spark+MLlib分布式学习算法的研究[J]. 商洛学院学报, 2015, 29(2):16-19. Li Yanguang. Research on distribution learning algorithm based on Spark + Mllib[J]. Journal of Shangluo University, 2015, 29(2):16-19.
[17] 宫秀文, 张佩云. 基于PageRank的社交网络影响最大化传播模型与算法研究[J]. 计算机科学, 2013, 40(6A):136-140. Gong Xiuwen, Zhang Peiyun. Research on propagation model and algorithm for influence maximization in social network based on pagerank[J]. Computer Science, 2013, 40(6A):136-140.
[18] 原野, 李晨, 田丽华. 面向微博的PageRank算法的改进与应用[J]. 计算机应用与软件, 2017, 34(3):31-37. Yuan Ye, Li Chen, Tian Lihua. Improvement and application of PageRank algorithm for micro-blog[J]. Computer Applications and Software, 2017, 34(3):31-37.
[19] 王鹏, 汪振, 李松江, 等. 基于用户行为的改进PageRank影响力算法[J]. 计算机工程, 2017, 43(12):155-159. Wang Peng, Wang Zhen, Li Songjiang, et al. Improved pagerank influence algorithm based on user behavior[J]. Computer Engineering, 2017, 43(12):155-159.
[20] 王天吉, 朱艳辉, 李飞. 一种基于Z-score的微博文本情感分类方法[J]. 信息与电脑, 2018(6):40-42. Wang Tianji, Zhu Yanhui, Li Fei. A method of emotional classification on microblog text based on Z-score[J]. China Computer & Communication, 2018(6):40-42.
[21] 郑永广, 岳昆, 尹子都, 等. 大规模社交网络中高效的关键用户选取方法[J]. 计算机应用, 2017, 37(11):3101-3106. Zheng Yongguang, Yue Kun, Yin Zidu, et al. Efficient approach for selecting key users in large-scale social networks[J]. Journal of Computer Applications, 2017, 37(11):3101-3106.
[22] 文馨, 陈能成, 肖长江. 基于Spark Graph X和社交网络大数据的用户影响力分析[J]. 计算机应用研究, 2018, 35(3):830-834. Wen Xin, Chen Nengcheng, Xiao Changjiang. Analysis of user influence based on social network big data and Spark Graph X[J]. Application Research of Computers, 2018, 35(3):830-834.
[23] 王虹旭, 吴斌, 刘旸. 基于Spark的并行图数据分析系统[J]. 计算机科学与探索, 2015, 9(9):1066-1074. Wang Hongxu, Wu bin, Liu Yang. Parallel graph data analysis system based on Spark[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(9):1066-1074.
[24] 段剑峰. 基于Spark的大规模图数据并行计算研究[J]. 现代计算机, 2016(7):44-46. Duan Jianfeng. Research on large-scale graph parallel computing based on Spark[J]. Modern Computer, 2016(7):44-46.
[25] 孙海. Spark的图计算框架:Graph X[J]. 现代计算机, 2017(9):120-127. Sun Hai. Spark's graph calculation framework:Graph X[J]. Modern Computer, 2017(9):120-127.
[26] 陈虹君. Spark框架的Graph X算法研究[J]. 电脑知识与技术, 2015, 11(1):75-77. Chen Hongjun. Research on Graph X algorithms in Spark framework[J]. Computer Knowledge and Technology, 2015, 11(1):75-77.
[27] 宋宝燕, 张永普, 单晓欢. Spark-Graph X框架下的大规模加权图最短路径查询[J]. 辽宁大学学报, 2017, 44(4):289-293. Song Baoyan, Zhang Yongpu, Shan Xiaohuan. A shortest path method on large-scale graph based on Spark-Graph X[J]. Journal of Liaoning University, 2017, 44(4):289-293.
[28] 张陶, 于炯, 廖彬, 等. 基于Graph X的传球网络构建及分析研究[J]. 计算机研究与发展, 2016, 53(12):2729-2752. Zhang Tao, Yu Jiong, Liao Bin, et al. The construction and analysis of pass network graph based on Graph X[J]. Journal of Computer Research and Development, 2016, 53(12):2729-2752.
[29] 崔印昌. 基于Spark的社会网络分析系统的设计与实现[D]. 北京:北京邮电大学, 2017. Cui Yinchang. Design and implementation of social analysis system based on Spark[D]. Beijing University of Posts and Telecommunications, 2017.
[30] Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2):026113.
[31] Usha Nandini Raghavan, Reka Albert, Soundar Kumara. Near linear time algorithm to detect community structures in largescale networks[J]. Physical Review E, 2007, 76(3):036106.
[32] Michael J Barber, Clark J W. Detecting network communities by propagating labels under constraints[J]. Physial Review E, 2009, 80(2 Pt 2):026129
[33] 赵卓翔, 王轶彤, 田家堂, 等. 社会网络中基于标签传播的社区发现新算法[J]. 计算机研究与发展, 2011, 48(S3):8-15. Zhao Zhuoxiang, Wang Yitong, Tian Jiatang, et al. A novel algorighm for community discovery in social networks based on label propagation[J]. Journal of Computer Research and Development, 2011, 48(S3):8-15.
[34] 艾川, 陈彬, 刘亮, 等. 基于Pregel的大规模网络传播仿真算法设计及实现[J], 中国科学:信息科学, 2018, 48(7):932-946. Ai Chuan, Chen Bin, Liu Liang, et al. Design and implementation of large-scale network propagation simulation method inspired by Pregel mechanism[J]. Scientia Sinica(Informationis), 2018, 48(7):932-946.