Exclusive: Science and Technology Review in 2018

Achievements of perovskite solar cells in 2018

  • HU Xiaotian ,
  • SONG Yanlin
  • 1. Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-01-03

  Revised date: 2019-01-07

  Online published: 2019-01-29


2018 was the tenth year for the development of perovskite solar cells. A series of achievements in efficiency, device stability, module preparation, and flexible semi-transparent devices are summarized in this article. Several representative achievements in perovskite solar cells are introduced as well.

Cite this article

HU Xiaotian , SONG Yanlin . Achievements of perovskite solar cells in 2018[J]. Science & Technology Review, 2019 , 37(1) : 144 -150 . DOI: 10.3981/j.issn.1000-7857.2019.01.015


[1] Chen H, Ye F, Tang W T, et al. A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules[J]. Nature, 2017, 550(7674):92-95.
[2] Luo D Y, Yang W Q, Wang Z P, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J]. Science, 2018, 360(6396):1442-1446.
[3] Stolterfoht M, Wolff C M, Marquez J A, et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells[J]. Nature Energy, 2018, 3(10):847-854.
[4] Jeon N J, Na H, Jung E H, et al. A fluorene-terminated holetransporting material for highly efficient and stable perovskite solar cells[J]. Nature Energy, 2018, 3(8):682-689.
[5] Sahli F, Werner J, Kamino B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials, 2018, 17:820-826.
[6] Hagfeldt A, Saliba M. Perovskite solar cells on a planar architecture[J]. Science, 2018, 362(6413):449-453.
[7] Bi D Q, Li X, Milic J V, et al. Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability[J]. Nature Communications, 2018, 9:4482.
[8] Christians J A, Schulz P, Tinkham J S, et al. Tailored interfaces of unencapsulated perovskite solar cells for >1000 hour operational stability[J]. Nature Energy, 2018, 3:68-74.
[9] Saidaminov M I, Kim J, Jain A, et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air[J]. Nature Energy, 2018, 3:648-654.
[10] Hong S, Lee J, Kang H, et al. High-efficiency large-area perovskite photovoltaic modules achieved via electrochemically assembled metal-filamentary nanoelectrodes[J]. Science Advances, 2018, 4(8):1-9.
[11] Bu T L, Li J, Zheng F, et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module[J]. Nature Communications, 2018, 9:4609.
[12] Deng Y H, Zheng X P, Bai Y, et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules[J]. Nature Energy, 2018, 3:560-566.
[13] Li P W, Zhang Y Q, Liang C, et al. Phase pure 2D perovskite for high-performance 2D-3D heterostructured perovskite solar cells[J]. Advanced Materials, 2018, doi:10.1002/adma.201805323.
[14] Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy[J]. Advanced Materials, 2018, 30(35):1-9.
[15] Hu X T, Huang Z Q, Li F Y, et al. Nacre-inspired crystallization and elastic"brick-and-mortar"structure for a wearable perovskite solar module[J]. Energy & Environmental Science, 2018, doi:10.1039/C8EE01799A.
[16] Lin J, Lai M L, Dou L T, et al. Thermochromic halide perovskite solar cells[J]. Nature Materials, 2018, 17:261-267.