[1] McFarland D J, Wolpaw J R. Brain-computer interface use is a skill that user and system acquire together[J]. PLoS Biology, 2018, 16(7):e2006719.
[2] Chen X, Wang Y, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. PNAS, 2015, 112(44):E6058-E6067.
[3] Chen X, Zhao B, Wang Y, et al. Control of a 7-DOF robotic arm system with an SSVEP-based BCI[J]. International Journal of Neural Systems, 2018, 28(8):1850018.
[4] Marshall D, Coyle D, Wilson S, et al. Games, gameplay, and BCI:The state of the art[J]. IEEE Transactions on Computational Intelligence and AI in Games, 2013, 5(2):82-99.
[5] Miranda R A, Casebeer W D, Hein A M, et al. DARPA-funded efforts in the development of novel brain-computer interface technologies[J]. Journal of Neuroscience Methods, 2015, 244:52-67.
[6] Gao S, Wang Y, Gao X, et al. Visual and auditory brain-computer interfaces[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(5):1436-1447.
[7] Yang G Z, Bellingham J, Dupont P E, et al. The grand challenges of Science Robotics[J]. Science Robotics, 2018, 3(14):eaar7650.
[8] Nonsurgical neural interfaces could significantly expand use of neurotechnology[EB/OL]. (2018-03-16). https://www.darpa.mil/news-events/2018-03-16.
[9] Schwemmer M A, Skomrock N D, Sederberg P B, et al. Meeting brain-computer interface user performance expectations using a deep neural network decoding framework[J]. Nature Medicine, 2018, 24(11):1669-1676.
[10] Biasiucci A, Leeb R, Iturrate I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke[J]. Nature Communications, 2018, 9(1):2421.
[11] Perdikis S, Tonin L, Saeedi S, et al. The Cybathlon BCI race:Successful longitudinal mutual learning with two tetraplegic users[J]. PLoS Biology, 2018, 16(5):e2003787.
[12] Ganesh G, Nakamura K, Saetia S, et al. Utilizing sensory prediction errors for movement intention decoding:A new methodology[J]. Science Advances, 2018, 4(5):eaaq0183.
[13] Hebert C, Masvidal-Codina E, Suarez-Perez, A, et al. Flexible graphene solution-gated field-effect transistors:Efficient transducers for micro-electrocorticography[J]. Advanced Functional Materials, 2018, 28(12):1703976.
[14] Boto E, Holmes N, Leggett J, et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 2018, 555(7698):657-661.
[15] Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(1):104-112.
[16] Xing X, Wang Y, Pei W, et al. A high-speed SSVEP-based BCI using dry EEG electrodes[J]. Scientific Reports, 2018, 8(1):14708.
[17] Zhang Y, Wang Y, Zhou G, et al. Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces[J]. Expert Systems with Applications, 2018, 96:302-310.
[18] Wei C S, Lin Y P, Wang Y T, et al. A subject-transfer framework for obviating inter-and intra-subject variability in EEG-based drowsiness detection[J]. Neuroimage, 2018, 174:407-419.
[19] Lawhern V J, Solon A J, Waytowich N R, et al. EEGNet:A compact convolutional neural network for EEG-based braincomputer interfaces[J]. Journal of Neural Engineering, 2018, 15(5):056013.
[20] Meng J, Streitz T, Gulachek N, et al. Three-dimensional brain-computer interface control through simultaneous overt spatial attentional and motor imagery tasks[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(11):2417-2427.
[21] Xu M, Xiao X, Wang Y, et al. A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(5):1166-1175.
[22] Moses D A, Leonard M K, Chang E F. Real-time classification of auditory sentences using evoked cortical activity in humans[J]. Journal of Neural Engineering, 2018, 15(3):036005.
[23] Jiang L, Stocco A, Losey D M, et al. BrainNet:A multi-person brain-to-brain interface for direct collaboration between brains[J]. arXiv:1809.08632, 2018.
[24] Mahmud M, Kaiser M S, Hussain A, et al. Applications of deep learning and reinforcement learning to biological data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6):2063-2079.
[25] Silva G A. A new frontier:the convergence of nanotechnology, brain machine interfaces, and artificial intelligence[J]. Frontiers in Neuroscience, 2018, 12:843.
[26] Panuccio G, Semprini M, Natale L, et al. Progress in neuroengineering for brain repair:new challenges and open issues[J]. Brain and Neuroscience Advances, 2018, 2:1-11.
[27] Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms for EEG-based brain-computer interfaces:A 10 year update[J]. Journal of Neural Engineering, 2018, 15(3):031005.
[28] Wang Y, Chen X, Gao X, et al. A benchmark dataset for SSVEP-based brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25 (10):1746-1752.
[29] Lindgren J T, Merlini A, Lecuyer A, et al. SimBCI-A framework for studying BCI methods by simulated EEG[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(11):2096-2105.
[30] Bin G, Gao X, Wang Y, et al. A high-speed BCI based on code modulation VEP[J]. Journal of Neural Engineering, 2011, 8(2):025015.
[31] Chen X, Chen Z, Gao S, et al. A high- ITR SSVEP- based BCI speller[J]. Brain-Computer Interfaces, 2014, 1(3/4):181-191.
[32] Chen X, Wang Y, Gao S, et al. Filter bank canonical correlation analysis for implementing a high- speed SSVEP- based brain- computer interface[J]. Journal of Neural Engineering, 2015, 12(4):046008.
[33] Townsend G, Platsko V. Pushing the P300-based brain-computer interface beyond 100 bpm:Extending performance guided constraints into the temporal domain[J]. Journal of Neural Engineering, 2016, 13(2):026024.
[34] Ahn J W, Ku Y, Kim D Y, et al. Wearable in-the-ear EEG system for SSVEP- based brain- computer interface[J]. Electronics Letters, 2018, 54(7):413-414.
[35] Zao J K, Chien Y Y, Lin F C, et al. Intelligent virtual-reality head-mounted displays with brain monitoring and visual function assessment[J]. SID Symposium Digest of Technical Papers, 2018, 49(1):475-478.
[36] Stopczynski A, Stahlhut C, Larsen J E, et al. The smartphone brain scanner:A portable real-time neuroimaging system[J].PLoS One, 2014, 9(2):e86733.
[37] Ienca M, Haselager P, Emanuel E J. Brain leaks and consumer neurotechnology[J]. Nature Biotechnology, 2018, 36(9):805-810.