The thermospheric neutral density sees a strong variation during equinoxes and solstices due to the solar insolation variation. The long-term continual data from Chinese Atmospheric Density Detector installed on the satellite are used to study this variation, The main results of this study are that the thermospheric density has an obvious symmetry around March equinox and September equinox; the thermosphere density has an obvious asymmetry around June solstice and December solstice; the variations have an obvious hemispheric asymmetry in high latitude (around 80 degrees); the proportion of the atmospheric density is 3~3.6 times at the height of 670 km, 13 times at the height of 560 km; the latitude and the altitude contribute to this asymmetry; the comparison of the measured data and the NRLMSISE00 data shows that the NRLMSISE00 data cannot fully respond to the summer and winter hemisphere atmospheric density variations.
LI Yongping
,
SUN Yueqiang
,
WANG Xinyue
,
FU Zhenyu
. Variations of thermospheric density during equinox and solstice[J]. Science & Technology Review, 2019
, 37(6)
: 104
-113
.
DOI: 10.3981/j.issn.1000-7857.2019.06.014
[1] Daglis I A. Space storms and space weather hazards[M]. Dordrecht:Springer, 2001.
[2] 秦国泰. 强磁暴、能量粒子暴与热层大气密度涨落之间的相关关系[J]. 空间科学学报, 2013, 33(1):39-47. Qin Guotai. Relationship between severe geomagnetic storm, energetic particle storms and thermosphere density strong disturbances[J]. Chinese Journal of Space Science, 2013, 33(1):39-47.
[3] 李永平, 朱光武, 秦国泰, 等. 不同高度和不同地磁扰动期间热层大气密度模式值与探测值的显著差异[J]. 地球物理学报, 2014, 57(11):3703-3714. Li Yongping, Zhu Guangwu, Qin Guotai, et al. Significant differences of thermosphere density between the model and the obvervation values during different altitudes and geomagnetic disturbances[J]. Chinese Journal of Geophysics, 2014, 57(11):3703-3714.
[4] Liu H, Luhr, Henize V. Global distribution of the thermospheric total mass density derived from CHAMP[J]. Journal of Geophysical Research:Space Physics, 2005, 110, A4:301.
[5] Chen G M, Xu J Y, Wang W, et al. A comparison of the effects of CIR-and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits:Case studies[J]. Journal of Geophysical Research:Space Physics, 2012, 117(A8):315.
[6] Sutton E K, Forbes J M, Nerem R S. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data[J]. Journal of Geophysical Research:Space Physics, 2005, 110, A9:S40.
[7] 李永平, 朱光武, 秦国泰, 等. 地磁扰动期间热层大气N2数密度异常增变[J]. 中国科学:技术科学, 2014, 44(8):883-889. Li Yongping, Zhu Guangwu, Qin Guotai, et al. The abnormal variation of N2 number density in thermosphere during geomagnetic disturbance[J]. Science China Technological Sciences, 2014, 44(8):883-889.
[8] 秦国泰, 孙丽琳, 曾宏, 等. 2005年8月24日强磁暴事件对高层大气密度的扰动[J]. 空间科学学报, 2008, 28(2):137-141. Qin Guotai, Sun Lilin, Zeng Hong, et al. Disturbance of the upper atmospheric density during August 24, 2005 severe geomagnetic storm event[J]. Chinese Journal of Space Science, 2008, 28(2):137-141.
[9] Willis P, Deleflie F, Barlier F, et al. Effects of thermosphere total density perturbations on LEO orbits during severe geomagnetic conditions (Oct-Nov 2003) using DORIS and SLR data[J]. Advances in Space Research, 2005, 36(3):522-533.
[10] Bruinsma S, Forbes J M, Nerem R S, et al. Thermosphere density response to the 20-21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data[J]. Journal of Geophysical Research:Space Physics, 2006, 111(A6):03.
[11] Qin G, Qiu S, Ye H, et al. The thermospheric composition different responses to geomagnetic storm in the winter and summer hemisphere measured by "SZ" atmospheric composition detectors[J]. Advances in Space Research, 42(7):1281-1287.
[12] Lei J H, Matsuo T, Dou X K, et al. Annual and semiannual variations of thermospheric density:EOF analysis of CHAMP and GRACE data[J]. Journal of Geophysical Research:Space Physics, 2012, 117(A1):310.
[13] Qian L Y, Solomon S C, Kane T J, et al. Seasonal variation of thermospheric density and composition[J]. Journal of Geophysical Research:Space Physics, 2009, 114(A1):312.
[14] Liu J, Liu L B, Zhao B Q, et al. Superposed epoch analyses of thermospheric response to CIRs:Solar cycle and seasonal dependencies[J]. Journal of Geophysical Research:Space Physics, 2012, 117(A9):L10.
[15] Weng L B, Lei J H, Doornbos E, et al. Seasonal variations of thermospheric mass density at dawn/dusk from GOCE observations[J]. Journal of Geophysical Research, 2018, 36(2):489-496.
[16] Xu J Y, Wang W B, Lei J H, et al. The effect of periodic variations of thermospheric density on CHAMP and GRACE orbits[J]. Journal of Geophysical Research:Space Physics, 2011, 116, A2:315.
[17] 李勰, 徐寄遥, 唐歌实, 等. APOD卫星大气密度数据处理与标校[J]. 地球物理学报, 2018, 61(9):3567-3576. Li Xie, Xu Jiyao, Tang Geshi, et al. Processing and calibrating of in-situ atmospheric densities for APOD[J]. Chinese Journal of Geophysics, 2018, 61(9):3567-3576.
[18] Picone J M, Hedin A E, Drob D P, et al. NRLMSISE-00 empirical model of the atmosphere:Statistical comparisons and scientific issues[J]. Journal of Geophysical Research:Space Physics, 2002, 107(A12):15-16.
[19] Picone M, Hedin A E, Drob D. NRLMSISE-00 model 2001[EB/OL].[2018-10-01]. http://ccmc.gsfc.nasa.gov/modelweb/atmos/nrlmsise00.html.
[20] Emmert J T. Thermospheric mass density:A review[J]. Advances in Space Research, 2015, 56(5):773-824.