Civil aircraft design must be carried out in accordance with a large amount of airworthiness requirements. Failure to capture proper requirements in early design stage may lead to unnecessary design iterations and solution alternations. Therefore, a model based method is proposed for automatically mapping proper airworthiness requirements to a current design task in the early design. It mainly includes a design task model for formal representation of different aircraft features, and an airworthiness constraint model for semantically representing airworthiness regulations. Based on the study of model mapping rules, a searching algorithm is also developed to facilitate requirements acquisition. Finally, a software tool is also implemented using the above method and tested through a case study.
LIU Zelin
,
ZHANG Fang
. Model-based automatic capture of airworthiness requirements in civil aircraft design[J]. Science & Technology Review, 2019
, 37(7)
: 80
-87
.
DOI: 10.3981/j.issn.1000-7857.2019.07.012
[1] 运输类飞机适航标准[S]. 北京:中国民用航空局, 2011. CCAR-25-R4. Airworthiness standards:Transport category airplanes[S]. Beijing:Civil aviation authority of China, 2011. CCAR-25-R4.
[2] Society of Automotive Engineers. Guidelines for development of civil aircraft and systems (SAE ARP 4754A)[S]. Warrendale:Society of Automotive Engineers, 2010.
[3] De Florio F. 适航性:航空器合格审定引论[M]. 张曙光, 柯鹏, 等译. 北京:航空航天大学出版社, 2011. De Florio F. Airworthiness:An introduction to aircraft certification[M]. Zhang Shuguang, Ke Peng, translated. Beijing:Beihang University Press, 2011.
[4] 于敬宇, 路遥, 舒小华. 民航适航标准体系[C]//2010年航空器适航与空中交通管制学术年会论文集, 2010. Yu Jingyu, Lu Yao, Shu Xiaohua. Framework for civil airworthiness standard[C]//Aircraft Airworthiness Division, China Academy of Civil Aviation Science and Technology, 2010.
[5] Zhan P, Jayaram U, Kim O, et al. Knowledge representation and ontology mapping methods for product data in engineering applications[J]. Journal of Computing and Information Science in Engineering, 2010, 10:021004-1-021004-11.
[6] 陈磊, 叶修梓, 潘翔, 等. 基于本体的产品语义数据互操作[J]. 计算机集成制造系统, 2008, 14(4):821-828. Chen Lei, Ye Xiuzi, Pan Xiang, et al. Ontology-based semantic interoperability of product data[J]. Computer Integrated Manufacturing Systems, 2008, 14(4):821-828.
[7] 秦飞巍, 李路野, 高曙明. 面向异构参数化特征模型检索的本体映射方法[J]. 计算机集成制造系统, 2013, 19(7):1472-1483. Qin Feiwei, Li Luye, Gao Shuming. Ontology mapping method for retrieval of heterogeneous parametric feature models[J]. Computer Integrated Manufacturing Systems, 2013, 19(7):1472-1483.
[8] Bai J, Gao S, Tang W, et al. Design reuse oriented partial retrieval of CAD models[J]. Computer-Aided Design, 2010, 42(12):1069-1084.
[9] 胡玉杰, 李善平, 郭鸣. 基于本体的产品知识表达[J]. 计算机集成制造系统, 2003, 15(12):1531-1537. Hu Yujie, Li Shanping, Guo Ming. Ontology-based product knowledge representation[J]. Computer Integrated Manufacturing Systems, 2003, 15(12):1531-1537.
[10] 吴江, 陈宗基. 基于本体的多无人机系统语义互操作方法[J]. 上海交通大学学报, 2011, 45(2):290-294. Wu Jiang, Chen Zhongji. Semantic interoperability based on domain ontology for multi-UAVs[J]. Journal of Shanghai Jiao Tong University, 2011, 45(2):290-294.
[11] Kitamura Y, Mizoguchi R. Ontology-based systematization of functional knowledge[J]. Journal of Engineering Design, 2004, 15:327-351.
[12] 高鹏, 林兰芬, 蔡铭, 等. 基于本体映射的产品配置模型自动捕获[J]. 计算机集成制造系统, 2003, 9(9):810-816. Gao Peng, Lin Lanfen, Cai Ming, et al. Automatic acquisition of product configuration model based on ontology mapping[J]. Computer Integrated Manufacturing Systems, 2003, 9(9):810-816.
[13] 蔡文沁, 彭培林, 姜寿山. 航空产品设计知识的表示与重用技术研究[J]. 计算机集成制造系统, 2004, 10(1):55-58. Cai Wenqin, Peng Peilin, Jiang Shoushan. Knowledge representation and reuse in aircraft design[J]. Computer Integrated Manufacturing Systems, 2004, 10(1):55-58.
[14] 肖杭, 张秀彬. 基于分层模型与本体映射的异构电力信息系统集成[J]. 上海交通大学学报, 2009, 43(8):1238-1242. Xiao Hang, Zhang Xiubin. Integration of heterogeneous electric power information system based on hierarchy model and ontology mapping[J]. Journal of Shanghai Jiao Tong University, 2009, 43(8):1238-1242.
[15] Sowa J F. Knowledge representation:Logical, philosophical and computational foundations[M]. Salt Lake City:Brooks Cole Publisher, 2000.
[16] Welch R V, Dixon J R. Guiding conceptual design through behavioral reasoning[J]. Research in Engineering Design, 1994, 6:169-188.