Reviews

Design of new perovskite-type oxide ferroelectric materials within data science paradigm

  • YU Jian ,
  • CHU Junhao
Expand
  • 1. Institute of Functional Materials, Donghua University, Shanghai 201620, China;
    2. National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200092, China

Received date: 2018-04-11

  Revised date: 2018-10-15

  Online published: 2019-06-20

Abstract

The materials genome initiative (MGI) issued in 2011 convokes a new paradigm of data science complementing with empirical observation, theoretical model and computation simulation, and comprehensively integrates computing, experimental and theoretical methods to produce and deal with big-data under the framework of system engineering of material science. Thereafter, the relationships between properties and material genome (composition and structure of atom systems), processing parameters and service conditions are mined out of data for designing and deployment of new material in accordance with the desired goal. In this article, research paradigms, MGI and system engineering of material science are briefly introduced. Then how to design new materials within data science paradigm is presented in detail through an example in the field of perovskite-type oxide ferroelectric piezoceramics. Finally the result demonstrates that the method of data-mining driven designing within data science paradigm is able to reduce time-to-insight and human effort on synthesis, thus accelerating new materials discovery and deployment.

Cite this article

YU Jian , CHU Junhao . Design of new perovskite-type oxide ferroelectric materials within data science paradigm[J]. Science & Technology Review, 2019 , 37(11) : 71 -81 . DOI: 10.3981/j.issn.1000-7857.2019.11.009

References

[1] Hey T. The fourth paradigm:Data-intensive scientific discovery[C]. At International Symposium on Information Management in a Changing World (IMCW). Ankara, 2012.
[2] 邓仲华, 李志芳. 科学研究范式的演化——大数据时代的科学研究第四范式[J]. 情报资料工作, 2013, 4:19-23. Deng Zhonghua, Li Zhifang. The evolution of scientific research paradigm-The fourth paradigm of scientific research in the era of big data[J]. Intelligence & Materials Work, 2013, 4:19-23.
[3] 赵斌. 第四范式:基于大数据的科学研究[EB/OL]. (2015-10-26)[2018-10-20]. http://blog.sciencenet.cn/blog-502444-9311-55.html. Zhao Bin. Fourth paradigm:Scientific research based on big data[EB/OL]. (2015-10-26)[2018-10-20]. http://blog.sciencenet.cn/blog-502444-931155.html.
[4] Agrawal A, Choudhary A. Perspective:Materials informatics and big data:Realization of the "fourth paradigm" of science in materials science[J]. APL Materials, 2016, 4:053208.
[5] Holdren J P. Materials genome initiative for global competitiveness[R]. Washington, DC:NSTC, 2011.
[6] 汪洪, 向勇, 项晓东, 等. 材料基因组——材料研发新模式[J]. 科技导报, 2015, 33(10):13-19. Wang Hong, Xiang Yong, Xiang Xiaodong, et al. Materials genome enables research and development revolution[J]. Science & Technology Review, 2015, 33:13-19.
[7] "材料基因工程关键技术与支撑平台"重点专项2018年度项目申报指南[Z]. 北京:科学技术部, 2017. 2018 Key project application guideline for "Key technology and support platform for material genome engineering"[Z]. Beijing:Ministry of science and technology, 2017.
[8] 顾秉林. 材料科学系统工程:建立我国新材料产业体系的关键[J]. 科技导报, 2015, 33(10):1. Gu Binglin. System engineering of materials science:the key to establish China's new material industry system[J]. Science & Technology Review, 2015, 33(10):1.
[9] 陈立泉. 师昌绪先生与中国版"材料基因计划"[J]. 科技导报, 2015, 33(10):126. Chen Liquan. Mr. Shi Changxu and Chinese version of Material Genome Initiative[J]. Science & Technology Review, 2015, 33(10):126.
[10] 刘伟. 关于人工智能若干重要问题的思考[J]. 学术前沿, 2016, 4(上):6-11. Liu Wei. Some important questions on artificial intelligence[J]. The Academic Frontier, 2016, 4:6-11.
[11] 刘伟. 人机智能融合:人工智能发展的未来方向[J]. 学术前沿, 2017, 10(下):26-31. Liu Wei. Human-computer intelligent integration:the future of artificial intelligence[J]. The Academic Frontier, 2017, 10:26-31.
[12] Lookman T, Alexander F J, Bishop A R. Perspective:Codesign for materials science:An optimal learning approach[J]. APL Mater, 2016, 4:053501.
[13] Resta R. Macroscopic polarization in crystalline dielectrics:the geometric phase approach[J]. Review Modern Physics, 1994, 66:899-916.
[14] Armiento R, Kozinsky B, Fornari M, Ceder G. Screening for high-performance piezoelectrics using high-throughput density functional theory[J]. Physics Review B, 2011, 84:014103.
[15] Butler K T, Frost J M, Skelton J M, et al. Computational materials design of crystalline solids[J]. Chemical Society Reviews, 2016, 45:6138-6146.
[16] Lines M E, Glass A M. Principles and applications of ferroelectrics and related materials[M]. Oxford:Clarendon Press, 2001.
[17] Stringer C J, Shrout T R, Randall C A, et al. Classification of transition temperature behavior in ferroelectric PbTiO3-Bi (Me'Me")O3 solid solutions[J]. Journal of Applied Physics, 2006, 99:024106.
[18] Zhang L L, Yu J, Itoh M. Structural phase transitions of robust insulating Bi1-xLaxFe1-yTiyO3 multiferroics[J]. Journal of Applied Physics, 2014, 115:123523.
[19] Yu J, An F F, Cao F. Ferroic phase transition of tetragonal Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics:Factors determining Curie temperature[J]. Japanese Journal of Applied Physics, 2014, 53:051501.
[20] Abrahams S C. Systematic prediction of new ferroelectrics in space groups P31 and P32[J]. Acta Crystallographica Section B, 2003, 59:541-556.
[21] Abrahams S C, Kurtz S K, Jamieson P B. Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics[J]. Physics Review, 1968, 172:551-553.
[22] Sai Sunder V V S S, Halliyal A, Umarji A M. Investigation of tetragonal distortion in the PbTiO3-BiFeO3 system by hightemperature X-ray diffraction[J]. Journal of Materials Research, 1995, 10:1301-1306.
[23] Suchomel M R, Davies P K. Enhanced Tetragonality in xPbTiO3-(1-x)Bi(Zn1/2Ti1/2)O3 and Related Solid Solution Systems[J]. Applied Physics Letters, 2005, 86:262905.
[24] 陆文聪, 李国正, 刘亮, 等. 化学数据挖掘方法与应用[M]. 北京:化学工业出版社, 2011. Lu Wencong, Li Guozheng, Liu Liang, et al. Chemical data mining and applications[M]. Beijing:Chemical Industry Press, 2011.
[25] Zhang L L, Hou X B, Yu J. Ferroelectric and piezoelectric properties of high temperature (Bi, La)FeO3-Bi(Zn1/2Ti1/2)O3-PbTiO3 ceramics at rhombohedral/tetragonal coexistent phase[J]. Japanese Journal of Applied Physics, 2015, 54:081501.
[26] Lin Y, Zhang L L, Zheng W L, et al. Structural phase boundary of BiFeO3-Bi(Zn1/2Ti1/2)O3-BaTiO3 lead-free ceramics and their piezoelectric properties[J]. Journal of Materials Science Materials in Electronics, 2015, 26:7351-7360.
[27] Hou X B, Yu J. Perovskite-structured BiFeO3-Bi(Zn1/2Ti1/2)O3-PbTiO3 solid solution piezoelectric ceramics with Curie temperature about 700℃[J]. Journal of the American Ceramic Society, 2013, 96:2218-2224.
[28] 传感器:"感知中国"的瓶颈[EB/OL]. (2016-12-05)[2018-10-20]. http://news.sciencenet.cn/htmlnews/2016/12/362734.shtm. Sensors:The bottleneck of Sensing China[EB/OL]. (2016-12-05)[2018-10-20]. http://news.sciencenet.cn/htmlnews/2016/12/362734.shtm.
[29] Stevenson T, Martin D G, Cowin P I. Piezoelectric materials for high temperature transducers and actuators[J]. Journal of Materials Science:Mater. Electron, 2015, 26:9256-9267.
[30] 国务院" 十三五"国家科技创新规划[R/OL]. (2016-08-08)[2018-11-20]. http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm. The State Council's 13th five-year program for national science and technology innovation[R/OL]. (2016-08-08)[2018-11-20]. http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm.
[31] Oeko-Institut E V, Fraunhofer-Institut I Z M. Report for the European Commission[R]. 2016.
[32] Rodel J, Jo W, Seifert K T P, et al. Perspective on the Development of Lead-free Piezoceramics[J]. Journal of the American Ceramic Society, 2009, 92:1153-1177.
[33] Adachi M, Akishige Y, Deguchi K, et al. Perovskite-type oxides, in Landolt-Börnstein numerical data and functional relationships in science and technology:Ferroelectrics and related substances[B]. Group 3 Volume 36, Subvolume A1, 2001, 67-505.
[34] Zhang L L, Yu J. Robust insulating La and Ti co-doped BiFeO3 multiferroic ceramics[J]. Journal of Materials Science:Mater. Electron, 2016, 27:8725-8733.
[35] Chen J, Xing X R, Sun C, et al. Zero thermal expansion in PbTiO3-based perovskites[J]. Journal of the American Chemical Society, 2008, 130:1144-1145.
[36] An F F, He W Z, Wang T T, et al. Preparation and electrical properties of modified lead titanate ceramics[J]. Ferroelectrics, 2010, 409:62-65.
[37] Lin Y, Zhang L L, Yu J. Piezoelectric and ferroelectric property in Mn-doped 0.69BiFeO3-0.04Bi(Zn1/2Ti1/2)O3-0.27BaTiO3 lead-free piezoceramics[J]. Journal of Materials Science:Mater. Electron, 2016, 27:1955-1965.
[38] Zheng W L, Yu J. Residual tensile stresses and piezoelectric properties in BiFeO3-Bi(Zn1/2Ti1/2)O3-PbTiO3 ternary solid solution perovskite ceramics[J]. AIP Advances, 2016, 6:085314.
[39] Yu J, Zhang L L, Hou X B, et al. Novel perovskite-type ferroelectrics with high curie temperature and piezoresponse[A]. IEEE Xplore, doi:10.1109/ISAF.2016.7578087.
[40] Zhang L L, Yu J. Residual tensile stress in robust insulating rhombohedral Bi1-xLaxFe1-yTiyO3 multiferroic ceramics and its ability to pin ferroelectric polarization switching[J]. Applied Physics Letters, 2015, 106:112907.
Outlines

/