[1] Scanziani M, Haüsser M. Electrophysiology in the age of light[J]. Nature, 2009, 461(7266):930-939.
[2] Payen A. Memoire sur la composition du tissu propre des plantes et du ligneux[J]. Comptes Rendus, 1938(7):1052-1056.
[3] Zhu H, Fang Z, Preston C, et al. Transparent paper:Fabrications, properties, and device applications[J]. Energy & Environmental Science, 2014(7):269-287.
[4] Zhu H, Jia Z, Chen Y, et al. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir[J]. Nano Letters, 2013, 13(7):3093-3100.
[5] Frey-Wyssling A. The fine structure of cellulose microfibrils[J]. Science, 1954, 119(3081):80-82.
[6] Manley R S J. Fine structure of native cellulose microfibrils[J]. Nature, 1964, 204(4964):1155-1157.
[7] Fengel D, Wegener G. Wood:Chemistry, ultrastructure, reactions[M]. Germany:Walter de Gruyter, 1983.
[8] Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1):71-85
[9] Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals:Chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110(6):3479-3500.
[10] Dieter K, Friederike K, Sebastian M, et al. Nanocellulose:A new family of nature-based materials[J]. Angewandte Chemie International Edition, 2011, 50:5438-5466.
[11] Liimatainen H, Ezekiel N, Sliz R, et al. High-strength nanocellulose-talc hybrid barrier films[J]. ACS Applied Materials & Interfaces, 2013, 5(24):13412-13418.
[12] Michael T P, András V, John D, et al. Development of the metrology and imaging of cellulose nanocrystals[J]. Measurement Science and Technology, 2011, 22(2):024005.
[13] Turbar A F, Snyder F W, Sandberg K R. Microfibrillated cellulose, a new cellulose product:Properties, uses, and commercial potential[C]. Shelton:ITT Rayonier Inc, 1983.
[14] Wang Q Q, Zhu J Y, Considine J M. Strong and optically transparent films prepared using cellulosic solid residue (CSR) recovered from cellulose nanocrystals (CNC) production waste stream[J]. ACS Applied Materials & Interfaces, 2013, 5(7):2527-2534.
[15] Chen J, Akin M, Yang L, et al. Transparent eletrode and magnetic permalloy made from novel nanopaper[J]. ACS Applied Materials & Interfaces, 2016, 8(40):27081-27090.
[16] Tobjörk D, Österbacka R. Paper electronics[J]. Advanced Materials, 2011, 23(17):1935-1961.
[17] Nogi M, Iwamoto S, Nakagaito A N, et al. Optically transparent nanofiber paper[J]. Advanced Materials, 2009, 21(16):1595-1598.
[18] Wang Q, Zhu J, Considine J M. Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream[J]. ACS Applied Materials & Interfaces, 2013, 5(7):2527-2534.
[19] Fukuzumi H, Saito T, Iwata T, et al. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation[J]. Biomacromolecules, 2009, 10(1):162-165.
[20] Cheng S, Zhang Y, Cha R, et al. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties[J]. Nanoscale, 2016, 8(2):973-978.
[21] Yang H, Tejado A, Alam N, et al. Films prepared from electrosterically stabilized nanocrystalline cellulose[J]. Langmuir, 2012, 28(20):7834-7842.
[22] Jin J, Lee D, Im H, et al. Chitin nanofiber transparent paper for flexible green electronics[J]. Advanced Materials, 2016, 28(26):5169-5175.
[23] Fang Z, Zhu H, Bao W, et al. Highly transparent paper with tunable haze for green electronics[J]. Energy Environmental Science, 2014, 7(10):3313-3319.
[24] Ha D, Fang Z, Hu L, et al. Paper-based antireflection coatings for photovoltaics[J]. Advanced Energy Materials, 2014, 4(9):1301804.
[25] Revol J F, Bradford H, Giasson J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension[J]. International Journal of Biological Macromolecules, 1992, 14(3):170-172.
[26] von Freymann G, Kitaev V, Lotsch B V, et al. Bottom-up assembly of photonic crystals[J]. Chemical Society Reviews, 2013, 42(7):2528-2554.
[27] Giese M, Blusch L K, Khan M K, et al. Responsive mesoporous photonic cellulose films by supramolecular contemplating[J]. Angewandte Chemie International Edition, 2014, 53(34):8880-8884.
[28] Huang J, Zhu H, Chen Y, et al. Highly transparent and flexible nanopaper transistors[J]. ACS Nano, 2013, 7(3):2106-2113.
[29] Sehaqui H, Zhou Q, Ikkala O, et al. Strong and tough cellulose nanopaper with high specific surface area and porosity[J]. Biomacromolecules, 2011, 12(10):3638-3644.
[30] Zhu H, Zhu S, Jia Z, et al. Anomalous scaling law of strength and toughness of cellulose nanopaper[J]. Proceedings of the National Academy of Sciences, 2015, 112(29):8971-8976.
[31] Henriksson M, Berglund L A, Isaksson P, et al. Cellulose nanopaper structures of high toughness[J]. Biomacromolecules, 2008, 9(6):1579-1585.
[32] Wu C N, Saito T, Fujisawa S, et al. Ultrastrong and high gasbarrier nanocellulose/clay-layered composites[J]. Biomacromolecules, 2012, 13(6):1927-1932.
[33] Sharma P R, Varma A J. Thermal stability of cellulose and their nanoparticles:Effect of incremental increases in carboxyl and aldehyde groups[J]. Carbohydrate Polymers, 2014, 114(19):339-343.
[34] Fukuzumi H, Saito T, Okita Y, et al. Thermal Stabilization of TEMPO-Oxidized Cellulose[J]. Polymer Degradation and Stability, 2010, 95(9):1502-1508.
[35] Hsieh M C, Kim C, Nogi M, et al. Electrically conductive lines on cellulose nanopaper for flexible electrical devices[J]. Nanoscale, 2013, 5(19):9289-9295.
[36] Nogi M, Kim C, Sugahara T, et al. High thermal stability of optical transparency in cellulose nanofiber paper[J]. Applied Physics Letters, 2013, 102(18):181911.
[37] Yano H, Sugiyama J, Nakagaito A N, et al. Optically transparent composites reinforced with networks of bacterial nanofibers[J]. Advanced Materials, 2005, 17(2):153-155.
[38] Zhu H, Xiao Z, Liu D, et al. Biodegradable transparent substrates for flexible organic-light-emitting diodes[J]. Energy & Environmental Science, 2013, 6(7):2105-2111.
[39] Sirviö P, Backfolk K, Maldzius R, et al. Dependence of paper surface and volume resistivity on electric field strength[J]. Journal of Imaging Science and Technology, 2008, 52(3):30501-1-30501-8.
[40] Murphy E J. The dependence of the conductivity of cellulose, silk and wool on their water content[J]. Journal of Physics and Chemistry of Solids, 1960, 16(1/2):115-122.
[41] Murphy E J. General atomic and molecular electronic structure system[J]. The Journal of Physical Chemistry, 1960, 15, 66-71.
[42] Fahmy T Y A, Mobarak F, El-Meligy M G. Processes Controlling the thermal regime of saltmarsh channel beds[J]. Wood Science and Technology, 2008, 42(3):691-698.
[43] Inui T, Koga H, Nogi M, et al. Miniaturized flexible antenna printed on a high dielectric constant nanopaper composite[J]. Advanced Materials, 2015, 27(6):1112-1116.
[44] Syverud K, Stenius P. Strength and barrier properties of MFC films[J]. Cellulose, 2009, 16(1):75-85.
[45] Fukuzumi H, Saito T, Iwata T, et al. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation[J]. Biomacromolecules, 2009, 10(1):162-165.
[46] Jiang Y, Song Y, Miao M, et al. Transparent nanocellulose hybrid films functionalized with ZnO nanostructures for UVblocking[J]. Journal of Materials Chemistry C, 2015, 3(26):6717-6724.
[47] Österberg M, Vartiainen J, Lucenius J, et al. A fast method to produce strong NFC films as a platform for barrier and functional materials[J]. ACS Applied Materials & Interfaces, 2013, 5(11):4640-4647.
[48] Bacon, W S. General system theory[J]. Popular Science, 1968, 124-125.
[49] Sun J, Wan Q, Lu A, et al. Low-voltage electric-double-layer paper transistors gated by microporous SiO2 processed at room temperature[J]. Applied Physics Letters, 2009, 95(22):222108.
[50] Lim W, Douglas E A, Kim S H, et al. High mobility InGaZnO4 thin-film transistors on paper[J]. Applied Physics Letters, 2009, 94(7):072103.
[51] Larsson O, Said E, Berggren M, et al. Insulator polarization mechanisms in polyelectrolyte-gated organic field-effect transistors[J]. Advanced Functional Materials, 2009, 19(20):3334-3341.
[52] Fujisaki Y, Koga H, Nakajima Y, et al. Transparent nanopaper-based flexible organic thin-film transistor array[J]. Advanced Functional Materials, 2014, 24(12):1657-1663.
[53] Bao W, Fang Z, Wan J, et al. Aqueous gating of van der Waals materials on bilayer nanopaper[J]. ACS Nano, 2014, 8(10):10606-10612.
[54] Barr M C, Rowehl J A, Lunt R R, et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper[J]. Advanced Materials, 2011, 23(31):3500-3505.
[55] Águas H, Mateus T, Vicente A, et al. Thin film silicon photovoltaic cells on paper for flexible indoor applications[J]. Advanced functional materials, 2015, 25(23):3592-3598.
[56] Gao Y, Choi S. Stepping toward self-powered papertronics:Integrating biobatteries into a single sheet of paper[J]. Advanced Materials Technologies, 2017, 2(1):1600194.
[57] Andersson P, Nilsson D, Svensson P O, et al. Active matrix displays based on all-organic electrochemical smart pixels printed on paper[J]. Advanced Materials, 2002, 14(20):1460-1464.
[58] Lamprecht B, Thünauer R, Ostermann M, et al. Organic photodiodes on newspaper[J]. Physica Status Solidi A, 2005, 202(5):R50-R52.
[59] Legnani C, Vilani C, Calil V L, et al. Bacterial cellulose membrane as flexible substrate for organic light emitting devices[J]. Thin Solid Films, 2008, 517(3):1016-1020.
[60] Nogi M, Yano H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry[J]. Advanced Materials, 2008, 20(10):1849-1852.
[61] Purandare S, Gomez E F, Steckl A J. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films[J]. Nanotechnology, 2014, 25(9):0940-12.
[62] Zhu H, Xiao Z, Liu D, et al. Biodegradable transparent substrates for flexible organic-light-emitting diodes[J]. Energy & Environmental Science, 2013, 6(7):2105-2111.