Leading Science and Technology

Application and prospect of new bionic materials

  • WANG Bo ,
  • ZHANG Leipeng ,
  • XU Gaoping ,
  • LI Xiaobai ,
  • LI Yao
Expand
  • Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150000, China

Received date: 2019-05-20

  Revised date: 2019-06-10

  Online published: 2019-06-24

Abstract

The most important characteristics of the bionic materials are the ability to be desined. The structure and the function of the biological materials in nature can be obtained by artificial intelligent materials by means of bionics. This paper summarizes the application of the bionic new materials in the fields of information communication, building industry, biological medicine, energy conservation and emission reduction, and analyzes the application direction of the bionic materials in the future, as well assome prospective development of the bionic materials.

Cite this article

WANG Bo , ZHANG Leipeng , XU Gaoping , LI Xiaobai , LI Yao . Application and prospect of new bionic materials[J]. Science & Technology Review, 2019 , 37(12) : 74 -78 . DOI: 10.3981/j.issn.1000-7857.2019.12.013

References

[1] 江雷, 冯琳. 仿生智能纳米界面材料[M]. 北京:化学工业出版社, 2016.
[2] 路甬祥. 仿生学的意义与发展[J]. 科学国人, 2004(4):22-24.
[3] 黄尊文. 勾画未来战争的脸谱[J]. 现代军事, 2004(1):60-61.
[4] Rana D, Matsuura T. Surface modifications for antifouling membranes[J]. Chemical Reviews, 2010, 110(4):2448-2471.
[5] Dalsin J L, Messersmith P B. Bioinspired antifouling polymers[J]. Materials Today, 2005, 8(9):38-46.
[6] Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers[J]. Angewandte Chemie International Edition, 2014, 53(7):1746-1754.
[7] Zhang Z J, Chen J X. Effects of changes in the structural parameters of bionic straw sandwich concrete beetle elytron plates on their mechanical and thermal insulation properties[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90(2):217-225.
[8] Tang J S. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin[J]. Nano Letters, 2018, 18(3):2054-2059.
[9] Jiang S, Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications[J]. Advanced Materials, 2010, 22(9):920-932.
[10] Chen S, Li L, Zhao C, et al. Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23):5283-5293.
[11] Shi C, Yan B, Xie L, et al. Long-range hydrophilic attraction between water and polyelectrolyte surfaces in oil[J]. Angewandte Chemie International Edition, 2016, 55(48):15017-15021.
[12] He K, Duan H, Chen G Y, et al. Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings:Overcoming the imperative challenge of oil-water separation membranes[J]. ACS Nano, 2015, 9(9):9188-9198.
[13] Kirschner C M, Brennan A B. Bio-inspired antifouling strategies[J]. Annual Review of Materials Research, 2012, 42(1):211-229.
[14] Wong T S. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365):443-447.
[15] Zhou X, Xie Q. Inhibition of marine biofouling by use of degradable and hydrolyzable silyl acrylate copolymer[J]. Industrial & Engineering Chemistry Research, 2015, 54(39):9559-9565.
[16] 刘宝生. 鲨鱼皮仿生结构应用及制造技术综述[J]. 塑性工程学报, 2014, 4(21):56-62.
[17] Xue L J. Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog[J]. ACS Nano, 2017, 11(10):9711-9719.
[18] Wei G W. Self-powered hybrid flexible nanogenerator and its application in bionic micro aerial vehicles[J]. Nano Energy, 2018, 9(54):10-16.
[19] Sudeep J, Manu S. Bacterial nanobionics via 3D printing[J]. Nano Letters, 2018, 18(12):7448-7456.
Outlines

/