Papers

Variations of research directions of atmospheric sciences in the German-speaking regions in the past 47 years

  • XU Jingwei ,
  • ZHI Xiefei ,
  • XU Min
Expand
  • 1. School of Atmospheric Sciences, Nanjing University of Information Sciences & Technology(NUIST), Nanjing 210044, China;
    2. Meteorological Bureau of Jiangsu Province, Nanjing 210008, China

Received date: 2019-03-18

  Revised date: 2019-05-18

  Online published: 2019-07-24

Abstract

In order to better understand the development of atmospheric sciences in the world and provide a guidance for the optimization and the adjustment of the course setting for atmospheric sciences for universities and colleges in China, this paper collects over 7000 graduation theses on atmospheric sciences in the German-speaking regions from 1969 to 2015, and analyzes the variations of the number of theses in each year, and explores the reasons for the rapid growth of the number of theses. It is shown that the number of theses on the atmospheric sciences in the German-speaking regions see obvious phases during the past 47 years, which can be roughly divided into three periods:the slow growth period, the rapid growth period, and the accelerated growth period. The growth rate of the first two periods is mainly related to the population growth, the growth rate in the third period is closely related to the social needs and the technological innovation. With the refining of the research directions in the atmospheric science field, since the 1990s, the differences between the proportions of different research directions are narrowed, as compared with those in the 1970s and the 1980s; in the past 47 years, the five research directions with the highest proportions among the 27 research directions are the atmospheric sounding, the applied meteorology, the climate and climate change, the atmospheric physics, and the dynamic meteorology, where the growth rate of the number of theses on applied meteorology is the highest, especially in the past 20 years, which means that the interdiscipline researches of atmospheric sciences and other industries are booming, and this trend will be further strengthened with the increasing social demand.

Cite this article

XU Jingwei , ZHI Xiefei , XU Min . Variations of research directions of atmospheric sciences in the German-speaking regions in the past 47 years[J]. Science & Technology Review, 2019 , 37(14) : 78 -85 . DOI: 10.3981/j.issn.1000-7857.2019.14.010

References

[1] 叶笃正, 季劲钧. 迎接大气科学发展即将到来的新飞跃[J]. 地球科学进展, 2005, 20(10):1047-1052. Ye Duzheng, Ji Jinjun. Meeting the upcoming new leap of atmospheric science development[J]. Advances in Earth Sciences, 2005, 20(10):1047-1052.
[2] 伍荣生. 大气科学教学改革势在必行[J]. 中国大学教学, 2002(1):19-20. Wu Rongsheng. Reform of atmospheric science teaching is imperative[J]. China University Teaching, 2002(1):19-20.
[3] 黄荣辉. 大气科学发展的回顾与展望[J]. 地球科学进展, 2001, 16(5):643-657. Huang Ronghui. Review and prospect of atmospheric science development[J]. Advances in Earth Science, 2001, 16(5):643-657.
[4] 张大林. 大气科学的世纪进展与未来展望[J]. 气象学报, 2005, 63(5):812-824. Zhang Dalin. Century progress and future prospects of atmospheric science[J]. Acta Meteorologica Sinica, 2005, 63(5):812-824.
[5] 智协飞, 张玲. AOGS第六届学术年会气象学研究报告综述[J]. 大气科学学报, 2009, 32(5):716-722. Zhi Xiefei, Zhang Ling. AOGS sixth annual conference of meteorology research report provides an overview[J] Transactions of Atmospheric Sciences, 2009, 32(5):716-722.
[6] 王会军, 徐永福, 周天军, 等. 大气科学:一个充满活力的前沿科学[J]. 地球科学进展, 2004, 19(4):31-38. Wang Huijun, Xu Yongfu, Zhou Tianjun, et al. atmospheric sciences:A dynamic frontier science[J] Advances in Earth Science, 2004, 19(4):31-38.
[7] 孙劭, 李多, 刘绿柳, 等. 2016年全球重大天气气候事件及其成因[J]. 气象, 2017, 43(4):477-485. Sun Shao, Li Duo, Liu Lüliu, et al. Major global weather events and their causes in 2016[J]. Meteorological Monthly, 2017, 43(4):477-485.
[8] 冯慧敏, 智协飞, 李荣. 郑州市地面风场的统计降尺度预报研究[J]. 中国科技论文, 2017, 12(15):104-110. Feng Huimin, Zhi Xiefei, Li Rong. Association, Zhengzhou City, statistical downscaling surface wind field of research[J]. China Sciencepaper, 2017, 12(15):104-110.
[9] 卞赟, 智协飞, 李佰平. 多模式集成方法对延伸期降水预报的改进[J]. 中国科技论文, 2015, 14(15):1813-1817. Bian Yun, Zhi Xiefei, Li Baiping. Improvement of extended precipitation forecasting by multi-model integration method[J]. China Sciencepaper, 2015, 14(15):1813-1817.
[10] 李北群. 论教育政策的利益分析:必要性、框架及应用[J]. 江苏社会科学, 2008, 29(6):210-214. Li Beiqun. On the benefit analysis of education policy:Necessity, framework and application[J]. Jiangsu Social Sciences, 2008, 29(6):210-214.
[11] 李北群, 徐月红. 大学实行学院制的研究[J]. 教育与职业, 2008, 576(8):37-39. Li Beiqun, Xu Yuehong. Research on college system in university[J]. Education and Vocation, 2008, 576(8):37-39.
[12] 曹鸿兴, 胡隐樵. 在汉堡"两所"的气象研究[J]. 气象科技, 1985, 13(1):1-3. Cao Hongxing, Hu Yinqiao. Meteorological research on "Two Institutes" in Hamburg[J]. Meteorological Science and Technology, 1985, 13(1):1-3.
[13] Deutscher Wetterdienst. How to download the promet[EB/OL]. (2018-10-18)[2019-01-20]. https://www.dwd.de/DE/leistungen/pbfb_verlag_promet/archiv/archiv_promet.html.
[14] Schaeffer D, Berens E M, Vogt D. Health literacy in the German population:Results of a representative survey[J]. Deutsches Ärzteblatt International, 2017, 114(4):53.
[15] 张述文. 德国大学对气象学专业大学生的培养[J]. 高等理科教育, 2001, 38(4):42-44. Zhang Shuwen. Cultivation of college students in meteorology in german universities[J]. Higher Education of Sciences, 2001, 38(4):42-44.
[16] 李北群. 产教融合试验区的创新与实践[J]. 中国高等教育, 2017(8):27-28. Li Beiqun. Innovation and practice in the experimental region of production and education integration[J]. China Higher Education, 2017(8):27-28.
[17] 彭正梅. 德国职业教育改革和发展趋势[J]. 全球教育展望, 2002, 31(3):77-80. Peng Zhengmei. Trends in the reform and development of vocational education in germany[J]. Global Education, 2002, 31(3):77-80.
[18] Xu J, Koldunov N, Remedio A R C, et al. On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model[J]. Climate Dynamics, 2018, 51(11):4525-4542.
[19] 徐经纬, 徐敏, 蒋熹, 等. 区域气候模式REMO对中国气温和降水模拟能力的评估[J]. 气候变化研究进展, 2016, 12(4):286-293. Xu Jingwei, Xu Min, Jiang Xi, et al. Evaluation of regional climate model REMO on China's temperature and precipitation simulation capability[J]. Advances in Climate Change Research, 2016, 12(4):286-293.
[20] Sein D V, Mikolajewicz U, Groeger M, et al. Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM:1. Description and validation[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(1):268-304.
[21] Stocker T F. Climate change 2013:the physical science basis:Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2014.
[22] Jacob D, Elizalde A, Haensler A, et al. Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions[J]. Atmosphere, 2012, 3(1):181-199.
Outlines

/