Aiming at route planning of UAV cluster under various threats, this paper proposes a cluster control method and periodic bilevel optimization algorithm. Based on a fixed-point arrival mission, a cluster dynamic control model is constructed by combining d-norm, impact function and inverse function, which can realize Reynolds rules. A periodic bilevel optimization algorithm is designed to solve the route planning problem of central UAV. Eeffectiveness of the model and feasibility of the optimization algorithm are verified by simulation examples. Compared with the hybrid genetic algorithm ie. artificial potential field algorithm, the periodic bilevel optimization algorithm has a higher efficiency and better optimization effect.
ZHAO Xuejun
,
DONG Yuhao
,
YUAN Xiujiu
,
BAO Zhuangzhuang
,
LI Jialin
,
LIANG Xiaolong
. Route planning of UAV cluster via periodic bilevel optimization[J]. Science & Technology Review, 2019
, 37(13)
: 53
-58
.
DOI: 10.3981/j.issn.1000-7857.2019.13.007
[1] Yang J, You X H, Wu G X, et al. Application of reinforcement learning in UAV cluster task scheduling[J]. Future Generation Computer Systems, 2019(95):140-148.
[2] Cui L, Zhang L F, Zhang Y H, et al. Study on modeling threat for flight path planning of UAV[J]. Machine Tool & Hydraulics, 2017, 45(24):149-153.
[3] Kang M, Liu Y, Zhao Y. A threat modeling method based on Kalman filter for UAV path planning[C]//2017 29th Chinese Control And Decision Conference (CCDC). IEEE, 2017:3823-3828.
[4] Shen H, Chen J, Li H, et al. Research on Real-Time flight path planning of UAV based on grey prediction[C]//20169th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2016(1):62-67.
[5] Reynolds C W. Flocks, herds, and schools:A distributed behavioral model[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4):25-34.
[6] Olfati-Saber R. Flocking for multi-agent dynamic systems:algorithms and theory[J]. IEEE Transactions on Automatic Control, 2006, 51(3):401-420.
[7] Zhang J L, Yan J G, Zhang P. Fixed-Wing UAV formation control design with collision avoidance based on an improved artificial potential field[J]. MATEC Web of Conferences, 2018(6):78342-78351.
[8] 卢艳军, 李月茹. 基于改进人工势场法的四旋翼飞行器航迹规划[J]. 火力与指挥控制, 2018, 43(11):121-124. Lu Yanjun, Li Yueru. Path planning for quadrotor based on improvement of artificial potential field[J]. Fire Control & Command Control, 2018, 43(11):121-124.
[9] 杨丽春, 顾颖彦, 白宇. 基于改进人工势场法的无人机在线航路规划算法[J]. 电子技术应用, 2018, 44(4):5-9. Yang Lichun, Gu Yingyan, Bai Yu. UAV's online route planning algorithm based on improved artificial potential field[J]. Application of Electronic Technique, 2018, 44(4):5-9.
[10] 叶彬强, 王一. 基于人工势场法的机器人避障算法[J]. 重庆理工大学学报(自然科学版), 2012, 26(9):82-85. Ye Binqiang, Wang Yi. Research of obstacle avoidance algorithm for robot based on artificial potential field[J]. Journal of Chongqing University of Technology(Natural Sceince Edition), 2012, 26(9):82-85.
[11] 林诗洁, 董晨, 陈明志, 等. 新型群智能优化算法综述[J]. 计算机工程与应用, 2018, 54(12):1-9. Lin Shijie, Dong Chen, Chen Mingzhi, et al. Summary of new group intelligent optimization algorithms. Computer Engineering and Applications, 2018, 54(12):1-9.
[12] 任波, 何迈, 周焘. 改进遗传模拟退火算法的航迹规划方法研究[J]. 飞行力学, 2008, 26(2):85-88. Ren Bo, He Mai, Zhou Tao. Study on route planning based on an improved genetic simulated annealing algorithm[J].Flight Dynamics, 2008, 26(2):85-88.
[13] 郑锐, 冯振明, 陆明泉. 基于遗传算法的无人机航路规划优化研究[J]. 计算机仿真, 2011, 28(6):88-91. Zheng Rui, Feng Zhenming, Lu Mingquan. Application of particle genetic algorithm to path planning of unmanned aerial vehicle. Computer Simulation, 2011, 28(6):88-91.
[14] 李原, 张会, 吴思瑾. 多基地多无人机协同侦察规划模型和模型求解方法[J]. 系统仿真学报, 2016, 28(10):2540-2545. Li Yuan, Zhang Hui, Wu Sijin. Planning model and model solve method of multi-base multi-UAV cooperative reconnaiance. Journal of System Simulation. 2016, 28(10):2540-2545.
[15] 杜于飞, 覃太贵, 邓秀方, 等. 多无人机协同任务规划问题[J]. 数学的实践与认识, 2017, 47(14):52-62. Du Yufei, Qin Taigui, Deng Xiufang, et al. Mission planning of multiple unmanned aerial vehicles. Mathematics in Practice and Theory. 2017, 47(14):52-62.
[16] Wang X, Wang L, Wu J. Impacts of time delay on flocking dynamics of a two-agent flock model[J]. Communications in Nonlinear Science and Numerical Simulation, 2019(70):80-88.
[17] Xie D, Zhang S, Xie J. Distributed dynamic state estimation with flocking mobile agents[J]. Physica A:Statistical Mechanics and its Applications, 2018(509):1195-1206.
[18] Hájek P, Johanis M. Smoothing of bump functions[J]. Journal of Mathematical Analysis & Applications, 2008, 338(2):1131-1139.