[1] Waymo LLC. Waymo safety report:On the road to fully self-driving[EB/OL].[2018-02-05]. https://storage.googleapis.com/sdc-prod/v1/safety-report/Safety%20Report%20-2018.pdf.
[2] Zhao D, Peng H. From the lab to the street:Solving the challenge of accelerating automated vehicle testing[EB/OL].[2018-12-11]. https://mcity.umich.edu/wp-content/uploads/2017/05/Mcity-White-Paper_Accelerated-AV-Testing.pdf.
[3] Huang W L, Wang K F, Lü Y S, et al. Autonomous vehicles testing methods review[C]//IEEE International Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE, 2016:163-168.
[4] Zhao D C, Liu Y H, Zhang C, et al. Autonomous driving simulation for unmanned vehicles[C]//IEEE Winter Conference on Applications of Computer Vision. Piscataway, NJ:IEEE, 2015:185-190.
[5] Zhang C, Liu Y H, Zhao D C, et al. RoadView:A traffic scene simulator for autonomous vehicle simulation testing[C]//International IEEE Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE, 2014:1160-1165.
[6] 黄武陵. 无人驾驶汽车带来的交通便利[J]. 单片机与嵌入式系统应用, 2016, 16(6):6-8.
[7] 黄武陵. 无人驾驶在路上, 我们准备好了吗[J]. 机器人产业, 2017(1):12-22.
[8] 江燕华, 熊光明, 姜岩, 等. 基于CarSim和Matlab的智能车辆视觉里程计仿真平台设计[J]. 机械工程学报, 2012, 48(22):113-120.
[9] Rastogi V. Virtual reality based simulation testbed for evaluation of autonomous vehicle behavior algorithms[D]. South Carolina:Clemson University, 2017.
[10] Huang W L, Lü Y S, Chen L, et al. Accelerate the autonomous vehicles reliability testing in parallel paradigm[C]//International Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE, 2018:922-927.
[11] Zhao D C, Weng J K, Liu Y H. Generating traffic scene with deep convolutional generative adversarial networks[C]//2017 Chinese Automation Congress (CAC). Piscataway, NJ:IEEE, 2017:6612-6617.
[12] 范志翔, 孙巍, 潘汉中, 等. 无人驾驶车辆汽车测试技术发展现状与思考[J]. 中国标准化, 2017(20):47-48.
[13] Martinez M, Sitawarin C, Finch K, et al. Beyond grand theft auto V for training, testing and enhancing deep learning in self driving cars[EB/OL].[2018-12-30]. https://arxiv.org/pdf/1712.01397.pdf.
[14] Chen Y, Chen S T, Zhang T Y K, et al. Autonomous vehicle testing and validation platform:Integrated simulation system with hardware in the loop[C]//2018 IEEE Intelligent Vehicles Symposium (IV). Piscataway, NJ:IEEE, 2018:949-956.
[15] 兰清. 虚拟驾驶平台中虚拟智能汽车控制决策模型研究[D]. 北京:北京邮电大学, 2011.
[16] 田赓. 复杂动态城市环境下无人驾驶车辆仿生换道决策模型研究[D]. 北京:北京理工大学, 2016.
[17] 宋威龙, 熊光明, 王诗源, 等. 基于驾驶员类型分析的智能车辆交叉口行为决策[J]. 北京理工大学学报, 2016, 36(9):917-922.
[18] Zhang Q, Chen D X, Li Y S, et al. Research on performance test method of lane departure warning system with PreScan[C]//Proceedings of SAE-China Congress 2014:Selected Papers. Berlin Heidelberg:Springer, 2015:445-453.
[19] 王楠, 刘卫国, 张君媛, 等. 汽车ACC系统纵向控制六模式切换策略仿真研究[J]. 交通信息与安全, 2014, 32(4):143-148.
[20] Xie J M, Gong J W, Wu S B, et al. A personalized curve driving model for intelligent vehicle[C]//IEEE International Conference on Unmanned Systems. Piscataway, NJ:IEEE, 2018:301-306.
[21] 孙博华, 邓伟文, 朱冰, 等. 基于反应式行为的车辆运动意图辨识[J]. 吉林大学学报(工学版), 2018(1):36-43.
[22] Sun B H, Deng W W, Wu J, et al. Research on the classification and identification of driver's driving style[C]//International symposium on computational intelligence and design. Piscataway, NJ:IEEE, 2018:28-32.
[23] Gupta N, Vijay R, Korupolu P V N, et al. Architecture of autonomous vehicle simulation and control framework[J]. IEEE Signal Processing Letters, 2015, 22(7):1-6.
[24] Nugraha Y P, Ridlwan H M, Riansyah M I, et al. Autonomous tracking of hexacopter on moving mobile robot using Gazebo ROS simulation[C]//Proceedings of the 9th International Conference on Machine Learning and Computing. New York:ACM, 2017:498-501.
[25] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[EB/OL].[2018-11-30]. https://arxiv.org/pdf/1509.02971.pdf.
[26] Koutník J, Cuccu G, Schmidhuber J, et al. Evolving large-scale neural networks for vision-based reinforcement learning[C]//Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. New York:ACM, 2013:1061-1068.
[27] Xiong X, Wang J Q, Zhang F, et al. Combining deep reinforcement learning and safety based control for autonomous driving[EB/OL].[2018-12-29]. https://arxiv.org/ftp/arxiv/papers/1612/1612.00147.pdf.
[28] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2012:3354-3361.
[29] Naghavi S H, Avaznia C, Talebi H. Integrated real-time object detection for self-driving vehicles[C]//2017 10th Iranian Conference on Machine Vision and Image Processing (MVIP). Piscataway, NJ:IEEE, 2017:154-158.
[30] Prabhakar G, Kailath B, Natarajan S, et al. Obstacle detection and classification using deep learning for tracking in high-speed autonomous driving[C]//2017 IEEE Region 10 Symposium (TENSYMP). Piscataway, NJ:IEEE, 2017:1-6.
[31] Chacra D A, Zelek J. Road segmentation in street view images using texture information[C]//2016 13th Conference on Computer and Robot Vision (CRV). Piscataway, NJ:IEEE, 2016:424-431.
[32] Navarro A, Joerdening J, Khalil R, et al. Development of an autonomous vehicle control strategy using a single camera and deep neural networks[C]. Warrendale:WCX World Congress Experience, 2018.
[33] Yang Z, Zhang Y, Yu J, et al. End-to-end multi-modal multi-task vehicle control for self-driving cars with visual perceptions[C]//2018 24th International Conference on Pattern Recognition (ICPR). Piscataway, NJ:IEEE, 2018:2289-2294.
[34] Chi L, Mu Y. Learning end-to-end autonomous steering model from spatial and temporal visual cues[C]//Proceedings of the Workshop on Visual Analysis in Smart and Connected Communities. New York:ACM, 2017:9-16.
[35] Santana E, Hotz G. Learning a driving simulator[EB/OL].[2019-01-02]. https://arxiv.org/pdf/1608.01230.pdf.
[36] Chen Z, Huang X. End-to-end learning for lane keeping of self-driving cars[C]//2017 IEEE Intelligent Vehicles Symposium (IV). Piscataway, NJ:IEEE, 2017:1856-1860.
[37] 王飞跃. 人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论[J]. 复杂系统与复杂性科学, 2004, 1(4):25-35.
[38] 王飞跃. 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004, 19(5):485-489.
[39] 王飞跃, 史帝夫·兰森. 从人工生命到人工社会——复杂社会系统研究的现状和展望[J]. 复杂系统与复杂性科学, 2004, 1(1):33-41.
[40] 王飞跃. 关于复杂系统研究的计算理论与方法[J]. 中国基础科学, 2004, 6(5):5-12.
[41] Han S S, Wang F Y, Wang Y C, et al. Parallel vehicles based on the ACP theory:Safe trips via self-driving[C]//Intelligent Vehicles Symposium. Piscataway, NJ:IEEE, 2017:20-25.
[42] 白天翔, 王帅, 沈震, 等. 平行机器人与平行无人系统:框架、结构、过程、平台及其应用[J]. 自动化学报, 2017, 43(2):161-175.
[43] Li Y C, Liu Y H, Zhang C, et al. The"floor-wall"traffic scenes construction for unmanned vehicle simulation evaluation[C]//International IEEE Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE, 2014:1726-1731.
[44] Li L, Huang W L, Liu Y H, et al. Intelligence testing for autonomous vehicles:A new approach[J]. IEEE Transactions on Intelligent Vehicles, 2017, 1(2):158-166.
[45] Li L, Lin Y L, Zheng N N, et al. Artificial intelligence test:A case study of intelligent vehicles[J]. Artificial Intelligence Review, 2018(10):1-25.
[46] Wang F Y, Zheng N N, Cao D, et al. Parallel driving in CPSS:A unified approach for transport automation and vehicle intelligence[J]. IEEE/CAA Journal of AutomaticaSinica, 2017, 4(4):577-587.
[47] Wang F Y. The emergence of intelligent enterprises:From CPS to CPSS[J]. IEEE Intelligent Systems, 2010, 25(4):85-88.
[48] 熊刚. 社会物理信息系统(CPSS)及其典型应用[J]. 自动化博览, 2018, 35(8):54-58.
[49] Wang F Y. Scanning the issue and beyond:Parallel driving with software vehicular robots for safety and smartness[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4):1381-1387.
[50] 专访无人驾驶开拓者王飞跃教授:平行驾驶不是遥控驾驶[EB/OL]. (2018-08-22)[2019-01-03]. https://mp.weixin.qq.com/s/exaQcXu4lWRcvaqs2-JIww.