Reviews

An overview of virtual testing technology for unmanned ground vehicles

  • SUN Yang ,
  • FU Zhichao ,
  • XIONG Guangming
Expand
  • 1. College of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China;
    2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2019-02-12

  Revised date: 2019-03-05

  Online published: 2019-08-27

Abstract

Test of unmanned ground vehicle is an important step before its real operation. In the actual test stage, a lot of manpower, material resources, financial resources and time are needed. The virtual simulation test technology of unmanned ground vehicles can greatly reduce the test consumption and improve efficiency. This paper introduces the applications of unmanned ground vehicle simulation and deep learning in training unmanned ground vehicles, as well as the contribution of the application of parallel driving technology to virtual testing technology. This paper also describes the development trend of virtual testing technology, and briefly introduces related platforms of unmanned ground vehicle. According to the current development, the significance of virtual test of unmanned ground vehicles are expounded.

Cite this article

SUN Yang , FU Zhichao , XIONG Guangming . An overview of virtual testing technology for unmanned ground vehicles[J]. Science & Technology Review, 2019 , 37(15) : 106 -113 . DOI: 10.3981/j.issn.1000-7857.2019.15.016

References

[1] Waymo LLC. Waymo safety report:On the road to fully self-driving[EB/OL].[2018-02-05]. https://storage.googleapis.com/sdc-prod/v1/safety-report/Safety%20Report%20-2018.pdf.
[2] Zhao D, Peng H. From the lab to the street:Solving the challenge of accelerating automated vehicle testing[EB/OL].[2018-12-11]. https://mcity.umich.edu/wp-content/uploads/2017/05/Mcity-White-Paper_Accelerated-AV-Testing.pdf.
[3] Huang W L, Wang K F, Lü Y S, et al. Autonomous vehicles testing methods review[C]//IEEE International Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE, 2016:163-168.
[4] Zhao D C, Liu Y H, Zhang C, et al. Autonomous driving simulation for unmanned vehicles[C]//IEEE Winter Conference on Applications of Computer Vision. Piscataway, NJ:IEEE, 2015:185-190.
[5] Zhang C, Liu Y H, Zhao D C, et al. RoadView:A traffic scene simulator for autonomous vehicle simulation testing[C]//International IEEE Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE, 2014:1160-1165.
[6] 黄武陵. 无人驾驶汽车带来的交通便利[J]. 单片机与嵌入式系统应用, 2016, 16(6):6-8.
[7] 黄武陵. 无人驾驶在路上, 我们准备好了吗[J]. 机器人产业, 2017(1):12-22.
[8] 江燕华, 熊光明, 姜岩, 等. 基于CarSim和Matlab的智能车辆视觉里程计仿真平台设计[J]. 机械工程学报, 2012, 48(22):113-120.
[9] Rastogi V. Virtual reality based simulation testbed for evaluation of autonomous vehicle behavior algorithms[D]. South Carolina:Clemson University, 2017.
[10] Huang W L, Lü Y S, Chen L, et al. Accelerate the autonomous vehicles reliability testing in parallel paradigm[C]//International Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE, 2018:922-927.
[11] Zhao D C, Weng J K, Liu Y H. Generating traffic scene with deep convolutional generative adversarial networks[C]//2017 Chinese Automation Congress (CAC). Piscataway, NJ:IEEE, 2017:6612-6617.
[12] 范志翔, 孙巍, 潘汉中, 等. 无人驾驶车辆汽车测试技术发展现状与思考[J]. 中国标准化, 2017(20):47-48.
[13] Martinez M, Sitawarin C, Finch K, et al. Beyond grand theft auto V for training, testing and enhancing deep learning in self driving cars[EB/OL].[2018-12-30]. https://arxiv.org/pdf/1712.01397.pdf.
[14] Chen Y, Chen S T, Zhang T Y K, et al. Autonomous vehicle testing and validation platform:Integrated simulation system with hardware in the loop[C]//2018 IEEE Intelligent Vehicles Symposium (IV). Piscataway, NJ:IEEE, 2018:949-956.
[15] 兰清. 虚拟驾驶平台中虚拟智能汽车控制决策模型研究[D]. 北京:北京邮电大学, 2011.
[16] 田赓. 复杂动态城市环境下无人驾驶车辆仿生换道决策模型研究[D]. 北京:北京理工大学, 2016.
[17] 宋威龙, 熊光明, 王诗源, 等. 基于驾驶员类型分析的智能车辆交叉口行为决策[J]. 北京理工大学学报, 2016, 36(9):917-922.
[18] Zhang Q, Chen D X, Li Y S, et al. Research on performance test method of lane departure warning system with PreScan[C]//Proceedings of SAE-China Congress 2014:Selected Papers. Berlin Heidelberg:Springer, 2015:445-453.
[19] 王楠, 刘卫国, 张君媛, 等. 汽车ACC系统纵向控制六模式切换策略仿真研究[J]. 交通信息与安全, 2014, 32(4):143-148.
[20] Xie J M, Gong J W, Wu S B, et al. A personalized curve driving model for intelligent vehicle[C]//IEEE International Conference on Unmanned Systems. Piscataway, NJ:IEEE, 2018:301-306.
[21] 孙博华, 邓伟文, 朱冰, 等. 基于反应式行为的车辆运动意图辨识[J]. 吉林大学学报(工学版), 2018(1):36-43.
[22] Sun B H, Deng W W, Wu J, et al. Research on the classification and identification of driver's driving style[C]//International symposium on computational intelligence and design. Piscataway, NJ:IEEE, 2018:28-32.
[23] Gupta N, Vijay R, Korupolu P V N, et al. Architecture of autonomous vehicle simulation and control framework[J]. IEEE Signal Processing Letters, 2015, 22(7):1-6.
[24] Nugraha Y P, Ridlwan H M, Riansyah M I, et al. Autonomous tracking of hexacopter on moving mobile robot using Gazebo ROS simulation[C]//Proceedings of the 9th International Conference on Machine Learning and Computing. New York:ACM, 2017:498-501.
[25] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[EB/OL].[2018-11-30]. https://arxiv.org/pdf/1509.02971.pdf.
[26] Koutník J, Cuccu G, Schmidhuber J, et al. Evolving large-scale neural networks for vision-based reinforcement learning[C]//Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. New York:ACM, 2013:1061-1068.
[27] Xiong X, Wang J Q, Zhang F, et al. Combining deep reinforcement learning and safety based control for autonomous driving[EB/OL].[2018-12-29]. https://arxiv.org/ftp/arxiv/papers/1612/1612.00147.pdf.
[28] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2012:3354-3361.
[29] Naghavi S H, Avaznia C, Talebi H. Integrated real-time object detection for self-driving vehicles[C]//2017 10th Iranian Conference on Machine Vision and Image Processing (MVIP). Piscataway, NJ:IEEE, 2017:154-158.
[30] Prabhakar G, Kailath B, Natarajan S, et al. Obstacle detection and classification using deep learning for tracking in high-speed autonomous driving[C]//2017 IEEE Region 10 Symposium (TENSYMP). Piscataway, NJ:IEEE, 2017:1-6.
[31] Chacra D A, Zelek J. Road segmentation in street view images using texture information[C]//2016 13th Conference on Computer and Robot Vision (CRV). Piscataway, NJ:IEEE, 2016:424-431.
[32] Navarro A, Joerdening J, Khalil R, et al. Development of an autonomous vehicle control strategy using a single camera and deep neural networks[C]. Warrendale:WCX World Congress Experience, 2018.
[33] Yang Z, Zhang Y, Yu J, et al. End-to-end multi-modal multi-task vehicle control for self-driving cars with visual perceptions[C]//2018 24th International Conference on Pattern Recognition (ICPR). Piscataway, NJ:IEEE, 2018:2289-2294.
[34] Chi L, Mu Y. Learning end-to-end autonomous steering model from spatial and temporal visual cues[C]//Proceedings of the Workshop on Visual Analysis in Smart and Connected Communities. New York:ACM, 2017:9-16.
[35] Santana E, Hotz G. Learning a driving simulator[EB/OL].[2019-01-02]. https://arxiv.org/pdf/1608.01230.pdf.
[36] Chen Z, Huang X. End-to-end learning for lane keeping of self-driving cars[C]//2017 IEEE Intelligent Vehicles Symposium (IV). Piscataway, NJ:IEEE, 2017:1856-1860.
[37] 王飞跃. 人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论[J]. 复杂系统与复杂性科学, 2004, 1(4):25-35.
[38] 王飞跃. 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004, 19(5):485-489.
[39] 王飞跃, 史帝夫·兰森. 从人工生命到人工社会——复杂社会系统研究的现状和展望[J]. 复杂系统与复杂性科学, 2004, 1(1):33-41.
[40] 王飞跃. 关于复杂系统研究的计算理论与方法[J]. 中国基础科学, 2004, 6(5):5-12.
[41] Han S S, Wang F Y, Wang Y C, et al. Parallel vehicles based on the ACP theory:Safe trips via self-driving[C]//Intelligent Vehicles Symposium. Piscataway, NJ:IEEE, 2017:20-25.
[42] 白天翔, 王帅, 沈震, 等. 平行机器人与平行无人系统:框架、结构、过程、平台及其应用[J]. 自动化学报, 2017, 43(2):161-175.
[43] Li Y C, Liu Y H, Zhang C, et al. The"floor-wall"traffic scenes construction for unmanned vehicle simulation evaluation[C]//International IEEE Conference on Intelligent Transportation Systems. Piscataway, NJ:IEEE, 2014:1726-1731.
[44] Li L, Huang W L, Liu Y H, et al. Intelligence testing for autonomous vehicles:A new approach[J]. IEEE Transactions on Intelligent Vehicles, 2017, 1(2):158-166.
[45] Li L, Lin Y L, Zheng N N, et al. Artificial intelligence test:A case study of intelligent vehicles[J]. Artificial Intelligence Review, 2018(10):1-25.
[46] Wang F Y, Zheng N N, Cao D, et al. Parallel driving in CPSS:A unified approach for transport automation and vehicle intelligence[J]. IEEE/CAA Journal of AutomaticaSinica, 2017, 4(4):577-587.
[47] Wang F Y. The emergence of intelligent enterprises:From CPS to CPSS[J]. IEEE Intelligent Systems, 2010, 25(4):85-88.
[48] 熊刚. 社会物理信息系统(CPSS)及其典型应用[J]. 自动化博览, 2018, 35(8):54-58.
[49] Wang F Y. Scanning the issue and beyond:Parallel driving with software vehicular robots for safety and smartness[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4):1381-1387.
[50] 专访无人驾驶开拓者王飞跃教授:平行驾驶不是遥控驾驶[EB/OL]. (2018-08-22)[2019-01-03]. https://mp.weixin.qq.com/s/exaQcXu4lWRcvaqs2-JIww.
Outlines

/