Exclusive: Rehabilitation technical aids and engineering

Research progress of rehabilitation training assistive technology

  • LI Zengyong ,
  • XIE Hui ,
  • XU Gongcheng ,
  • HUO Congcong ,
  • MA Lifang ,
  • FAN Yubo
Expand
  • 1. Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China;
    2. Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China;
    3. School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China

Received date: 2019-07-02

  Revised date: 2019-10-08

  Online published: 2019-11-30

Abstract

The rehabilitation training is a necessary treatment for the patients with stroke or other neuromuscular injuries. This paper reviews the researches of the rehabilitation training aids and the related assistive technologies at home and abroad, focusing on the rehabilitation training assistive technology in detection, rehabilitation training and treatment from the aspects of the rehabilitation function evaluation technology, the wearable technology, the neuroscience, the virtual reality and the multimodal control technology.

Cite this article

LI Zengyong , XIE Hui , XU Gongcheng , HUO Congcong , MA Lifang , FAN Yubo . Research progress of rehabilitation training assistive technology[J]. Science & Technology Review, 2019 , 37(22) : 8 -18 . DOI: 10.3981/j.issn.1000-7857.2019.22.002

References

[1] 姜荣荣, 陈艳, 潘翠环. 脑卒中后上肢和手运动功能康复评定的研究进展[J]. 中国康复理论与实践, 2015, 21(10):1173-1177.
[2] Macintosh B J, Graham S J. Magnetic resonance imaging to visualize stroke and characterize stroke recovery:A review[J]. Frontiers in Neurology, 2013, 4:14.
[3] Nelson P P. The neural basis of eeg waves[J]. Kybernetes, 1980, 9(3):217-222.
[4] Naseer N, Hong K-S. fNIRS-based brain-computer interfaces:A review[J]. Frontiers in Human Neuroscience, 2015, doi:10.3389/fnhum.2015.00003.
[5] Carter A R, Astafiev S V, Lang C E, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke[J]. Annals of Neurology, 2010, 67(3):365-375.
[6] Lu C M, Zhang Y J, Biswal B B, et al. Use of fNIRS to assess resting state functional connectivity[J]. Journal of Neuroscience Methods, 2010, 186(2):242-249.
[7] Naseer N, Hong M J, Hong K S. Online binary decision decoding using functional near-infrared spectroscopy for the development of brain-computer interface[J]. Experimental Brain Research, 2014, 232(2):555-564.
[8] Schroeter M L, Schmiedel O, Von Cramon D Y. Spontaneous low-frequency oscillations decline in the aging brain[J]. Journal of Cerebral Blood Flow and Metabolism, 2004, 24(10):1183-1191.
[9] Rowley A B, Payne S J, Tachtsidis I, et al. Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation[J]. Physiological Measurement, 2007, 28(2):161-173.
[10] Han Q, Li Z, Gao Y, et al. Phase synchronization analysis of prefrontal tissue oxyhemoglobin oscillations in elderly subjects with cerebral infarction[J]. Medical Physics, 2014, 41(10):102702.
[11] Han Q, Zhang M, Li W, et al. Wavelet coherence analysis of prefrontal tissue oxyhaemoglobin signals as measured using near-infrared spectroscopy in elderly subjects with cerebral infarction[J]. Microvascular Research, 2014, 95:108-115.
[12] Shiogai Y, Stefanovska A, Mcclintock P V E. Nonlinear dynamics of cardiovascular ageing[J]. Physics ReportsReview Section of Physics Letters, 2010, 488(2/3):51-110.
[13] Li Z, Zhang M, Xin Q, et al. Spectral analysis of nearinfrared spectroscopy signals measured from prefrontal lobe in subjects at risk for stroke[J]. Medical Physics, 2012, 39(4):2179-2185.
[14] Li Z, Zhang M, Xin Q, et al. Age-related changes in spontaneous oscillations assessed by wavelet transform of cerebral oxygenation and arterial blood pressure signals[J]. Journal of Cerebral Blood Flow and Metabolism, 2013, 33(5):692-699.
[15] Li Z, Zhang M, Cui R, et al. Wavelet coherence analysis of prefrontal oxygenation signals in elderly subjects with hypertension[J]. Physiological Measurement, 2014, 35(5):777-791.
[16] Bu L, Li J, Li F, et al. Wavelet coherence analysis of cerebral oxygenation signals measured by near-infrared spectroscopy in sailors:An exploratory, experimental study[J]. BMJ Open, 2016, 6(11):e013357.
[17] Wang B, Zhang M, Bu L, et al. Posture-related changes in brain functional connectivity as assessed by wavelet phase coherence of NIRS signals in elderly subjects[J]. Behavioural Brain Research, 2016, 312:238-245.
[18] Li Z, Wang Y, Li Y, et al. Wavelet analysis of cerebral oxygenation signal measured by near infrared spectroscopy in subjects with cerebral infarction[J]. Microvascular Research, 2010, 80(1):142-147.
[19] Sutton P R. The early onset of acute dental caries in adults following mental stress[J]. The New York State Dental Journal, 1965, 31(10):450-456.
[20] Wu X, Wang W W. Latency of P3 in semantic categorization of Chinese characters:Preliminary report[J]. Clinical EEG (electroencephalography), 1993, 24(1):31-36.
[21] D'olhaberriague L, Gamissans J M, Espadaler, et al. Transcranial magnetic stimulation as a prognostic tool in stroke[J]. Journal of the Neurological Sciences, 1997, 147(1):73.
[22] Hendricks H T, Hageman G, Van L J. Prediction of recovery from upper extremity paralysis after stroke by measuring evoked potentials[J]. Scandinavian Journal of Rehabilitation Medicine, 1997, 29(3):155.
[23] Rapisarda G, Bastings E, De Noordhout A M, et al. Can motor recovery in stroke patients be predicted by early transcranial magnetic stimulation?[J]. Stroke, 1996, 27(12):2191-2196.
[24] Demirtas-Tatlidede A, Vahabzadeh-Hagh A M, Bernabeu M, et al. Noninvasive brain stimulation in traumatic brain injury[J]. Journal of Head Trauma Rehabilitation, 2012, 27(4):274-292.
[25] Deroide N, Nih L R, Dinh R Y T, et al. Cerebral plasticity:From bench to bedside in stroke treatment[J]. Revue De Medecine Interne, 2010, 31(7):486-492.
[26] 苏敏, 韩立影, 杨卫新, 等. 经颅磁刺激在脑卒中患者上肢功能康复疗效评估中的应用[J]. 中华物理医学与康复杂志, 2016, 38(3):175-179.
[27] Dietz V. Rehabilitation of hand function post-stroke:Application of research based technology[J]. European Journal of Neurology, 2018, 25:641-641.
[28] Kiguchi K, Tanaka T, Fukuda T. Neuro-fuzzy control of a robotic exoskeleton with EMG signals[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(4):481-490.
[29] Guo S, Zhang S, Song Z, et al. Preliminary study on upper limb movement identification based on sEMG signal[C]//2012 ICME International Conference on Complex Medical Engineering (CME). Piscataway NJ:IEEE, 2012:683-688.
[30] Li Z J, Huang B, Ajoudani A, et al. Asymmetric bimanual control of dual-arm exoskeletons for human-cooperative manipulations[J]. IEEE Transactions on Robotics, 2018, 34(1):264-271.
[31] Rogers J, Malliaras G, Someya T. Biomedical devices go wild[J]. Science Advances, 2018, 4(9):2.
[32] Wang T L, Mantini D, Gillebert C R. The potential of real-time fMRI neurofeedback for stroke rehabilitation:A systematic review[J]. Cortex, 2018, 107:148-165.
[33] Masahito M, Noriaki H, Megumi H, et al. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims:A pilot study[J]. Stroke, 2013, 44(4):1091-1098.
[34] Boe S, Gionfriddo A, Kraeutner S, et al. Laterality of brain activity during motor imagery is modulated by the provision of source level neurofeedback[J]. Neuroimage, 2014, 101:159-167.
[35] Young B M, Zack N, Walton L M, et al. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface[J]. Frontiers in Neuroengineering, 2014, 7:26.
[36] Reichert J L, Kober S E, Schweiger D, et al. Shutting down sensorimotor interferences after stroke:A proof-ofprinciple SMR neurofeedback study[J]. Frontiers in Human Neuroscience, 2016, doi:10.3389/fnhum.2016.00348.
[37] 陈树耿, 贾杰. 脑机接口在脑卒中手功能康复中的应用进展[J]. 中国康复理论与实践, 2017, 23(1):23-26.
[38] Sarasola-Sanz A, López-Larraz E, Irastorza-Landa N, et al. An EEG-based brain-machine interface to control a 7-degrees of freedom exoskeleton for stroke rehabilitation[C]//Converging Clinical and Engineering Research on Neurorehabilitation II. Berlin:Springer International Publishing, 2017.
[39] Sarasola-Sanz A, Irastorza-Landa N, Eduardo LópezLarraz, et al. A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients[C]//2017 IEEE International Conference on Rehabilitation Robotics (ICORR). Piscataway NJ:IEEE, 2017:895-900.
[40] Yamato T P, Pompeu J E, Pompeu S M A, et al. Virtual reality for stroke rehabilitation[J]. Physical Therapy, 2016, 96(10):1508-1513.
[41] Santos L F D, Christ O, Mate K, et al. Movement visualisation in virtual reality rehabilitation of the lower limb:A systematic review[J]. Biomedical Engineering Online, 2016, 15(Suppl 3):75-88.
[42] Mottura S, Fontana L, Arlati S, et al. A virtual reality system for strengthening awareness and participation in rehabilitation for post-stroke patients[J]. Journal on Multimodal User Interfaces, 2015, 9(4):341-351.
[43] Trombetta M, Bazzanello Henrique P P, Brum M R, et al. Motion Rehab AVE 3D:A VR-based exergame for post-stroke rehabilitation[J]. Computer Methods and Programs in Biomedicine, 2017, 151:15-20.
[44] Rossi S, Hallett M, Rossini P M, et al. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research[J]. Clinical Neurophysiology, 2009, 120(12):2008-2039.
[45] Bindman L J, Lippold O C, Redfearn J W. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of longlasting after-effects[J]. The Journal of Physiology, 1964, 172:369-382.
[46] Maizey L, Allen C P G, Dervinis M, et al. Comparative incidence rates of mild adverse effects to transcranial magnetic stimulation[J]. Clinical Neurophysiology, 2013, 124(3):536-544.
[47] Bolmont B, Thullier F, Abraini J H. Relationships between mood states and performances in reaction time, psychomotor ability, and mental efficiency during a 31-day gradual decompression in a hypobaric chamber from sea level to 8848 m equivalent altitude[J]. Physiology & Behavior, 2000, 71(5):469-476.
[48] Gilula M F, Kirsch D L. Cranial electrotherapy stimulation review:a safer alternative to psychopharmaceuticals in the treatment of depression[J]. Journal of Neurotherapy, 2005, 9(2):7-26.
[49] 母其文. 交互式经颅磁刺激功能磁共振成像技术进展述评[J]. 世界复合医学, 2015(1):20-23.
[50] Bestmann S, Ruff C C, Blankenburg F, et al. Mapping causal interregional influences with concurrent TMS-fMRI[J]. Experimental Brain Research, 2008, 191(4):383-402.
[51] Fox P, Ingham R, George M S, et al. Imaging human intra-cerebral connectivity by PET during TMS[J]. Neuroreport, 1997, 8(12):2787-2791.
[52] Hanakawa T, Mima T, Matsumoto R, et al. Stimulus-response profile during single-pulse transcranial magnetic stimulation to the primary motor cortex[J]. Cerebral Cortex, 2009, 19(11):2605-2615.
[53] Mochizuki H, Furubayashi T, Hanajima R, et al. Hemoglobin concentration changes in the contralateral hemisphere during and after theta burst stimulation of the human sensorimotor cortices[J]. Experimental Brain Research, 2007, 180(4):667-675.
[54] Shitara H, Shinozaki T, Takagishi K, et al. Time course and spatial distribution of fMRI signal changes during single-pulse transcranial magnetic stimulation to the primary Motor cortex[J]. Neuroimage, 2011, 56(3):1469-1479.
[55] Kozel F A, Tian F, Dhamne S, et al. Using simultaneous repetitive transcranial magnetic stimulation/functional near infrared spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity[J]. Neuroimage, 2009, 47(4):1177-1184.
[56] Furubayashi T, Mochizuki H, Terao Y, et al. Cortical hemoglobin concentration changes underneath the coil after single-pulse transcranial magnetic stimulation:A near-infrared spectroscopy study[J]. Journal of Neurophysiology, 2013, 109(6):1626-1637.
[57] Bohning D E, Shastri A, Nahas Z, et al. Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation[J]. Investigative radiology, 1998, 33(6):336-340.
[58] Casula E P, Tarantino V, Basso D, et al. Low-frequency rTMS inhibitory effects in the primary motor cortex:Insights from TMS-evoked potentials[J]. Neuroimage, 2014, 98:225-232.
[59] Taylor P C J, Walsh V, Eimer M. Combining TMS and EEG to study cognitive function and cortico-cortico interactions[J]. Behavioural Brain Research, 2008, 191(2):141-147.
[60] Nasi T, Maki H, Kotilahti K, et al. Magnetic-stimulation-related physiological artifacts in hemodynamic near-infrared spectroscopy signals[J]. PloS One, 2011, 6(8):e24002.
[61] Park E, Kang M J, Lee A, et al. Real-time measurement of cerebral blood flow during and after repetitive transcranial magnetic stimulation:A near-infrared spectroscopy study[J]. Neuroscience Letters, 2017, 653:78-83.
[62] Mochizuki H, Ugawa Y, Terao Y, et al. Cortical hemoglobin-concentration changes under the coil induced by single-pulse TMS in humans:A simultaneous recording with near-infrared spectroscopy[J]. Experimental Brain Research, 2006, 169(3):302-310.
[63] Groiss S J, Mochizuki H, Furubayashi T, et al. Quadripulse stimulation induces stimulation frequency dependent cortical hemoglobin concentration changes within the ipsilateral motor cortical network[J]. Brain Stimulation, 2013, 6(1):40-48.
[64] Dimyan M A, Cohen L G. Contribution of transcranial magnetic stimulation to the understanding of functional Recovery mechanisms after stroke[J]. Neurorehabilitation and Neural Repair, 2010, 24(2):125-135.
[65] Antal A, Kovacs G, Chaieb L, et al. Cathodal stimulation of human MT + leads to elevated fMRI signal:A tDCS-fMRI study[J]. Restorative Neurology and Neuroscience, 2012, 30(3):255-263.
[66] Nitsche M A, Niehaus L, Hoffmann K T, et al. MRI study of human brain exposed to weak direct current stimulation of the frontal cortex[J]. Clinical Neurophysiology, 2004, 115(10):2419-2423.
[67] Fregni F, Marcondes R, Boggio P S, et al. Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation[J]. European Journal of Neurology, 2006, 13(9):996-1001.
[68] Ang K K, Guan C, Phua K S, et al. Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation[C]//2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway NJ:IEEE, 2012:4128-4131.
Outlines

/