[1] 姜荣荣, 陈艳, 潘翠环. 脑卒中后上肢和手运动功能康复评定的研究进展[J]. 中国康复理论与实践, 2015, 21(10):1173-1177.
[2] Macintosh B J, Graham S J. Magnetic resonance imaging to visualize stroke and characterize stroke recovery:A review[J]. Frontiers in Neurology, 2013, 4:14.
[3] Nelson P P. The neural basis of eeg waves[J]. Kybernetes, 1980, 9(3):217-222.
[4] Naseer N, Hong K-S. fNIRS-based brain-computer interfaces:A review[J]. Frontiers in Human Neuroscience, 2015, doi:10.3389/fnhum.2015.00003.
[5] Carter A R, Astafiev S V, Lang C E, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke[J]. Annals of Neurology, 2010, 67(3):365-375.
[6] Lu C M, Zhang Y J, Biswal B B, et al. Use of fNIRS to assess resting state functional connectivity[J]. Journal of Neuroscience Methods, 2010, 186(2):242-249.
[7] Naseer N, Hong M J, Hong K S. Online binary decision decoding using functional near-infrared spectroscopy for the development of brain-computer interface[J]. Experimental Brain Research, 2014, 232(2):555-564.
[8] Schroeter M L, Schmiedel O, Von Cramon D Y. Spontaneous low-frequency oscillations decline in the aging brain[J]. Journal of Cerebral Blood Flow and Metabolism, 2004, 24(10):1183-1191.
[9] Rowley A B, Payne S J, Tachtsidis I, et al. Synchronization between arterial blood pressure and cerebral oxyhaemoglobin concentration investigated by wavelet cross-correlation[J]. Physiological Measurement, 2007, 28(2):161-173.
[10] Han Q, Li Z, Gao Y, et al. Phase synchronization analysis of prefrontal tissue oxyhemoglobin oscillations in elderly subjects with cerebral infarction[J]. Medical Physics, 2014, 41(10):102702.
[11] Han Q, Zhang M, Li W, et al. Wavelet coherence analysis of prefrontal tissue oxyhaemoglobin signals as measured using near-infrared spectroscopy in elderly subjects with cerebral infarction[J]. Microvascular Research, 2014, 95:108-115.
[12] Shiogai Y, Stefanovska A, Mcclintock P V E. Nonlinear dynamics of cardiovascular ageing[J]. Physics ReportsReview Section of Physics Letters, 2010, 488(2/3):51-110.
[13] Li Z, Zhang M, Xin Q, et al. Spectral analysis of nearinfrared spectroscopy signals measured from prefrontal lobe in subjects at risk for stroke[J]. Medical Physics, 2012, 39(4):2179-2185.
[14] Li Z, Zhang M, Xin Q, et al. Age-related changes in spontaneous oscillations assessed by wavelet transform of cerebral oxygenation and arterial blood pressure signals[J]. Journal of Cerebral Blood Flow and Metabolism, 2013, 33(5):692-699.
[15] Li Z, Zhang M, Cui R, et al. Wavelet coherence analysis of prefrontal oxygenation signals in elderly subjects with hypertension[J]. Physiological Measurement, 2014, 35(5):777-791.
[16] Bu L, Li J, Li F, et al. Wavelet coherence analysis of cerebral oxygenation signals measured by near-infrared spectroscopy in sailors:An exploratory, experimental study[J]. BMJ Open, 2016, 6(11):e013357.
[17] Wang B, Zhang M, Bu L, et al. Posture-related changes in brain functional connectivity as assessed by wavelet phase coherence of NIRS signals in elderly subjects[J]. Behavioural Brain Research, 2016, 312:238-245.
[18] Li Z, Wang Y, Li Y, et al. Wavelet analysis of cerebral oxygenation signal measured by near infrared spectroscopy in subjects with cerebral infarction[J]. Microvascular Research, 2010, 80(1):142-147.
[19] Sutton P R. The early onset of acute dental caries in adults following mental stress[J]. The New York State Dental Journal, 1965, 31(10):450-456.
[20] Wu X, Wang W W. Latency of P3 in semantic categorization of Chinese characters:Preliminary report[J]. Clinical EEG (electroencephalography), 1993, 24(1):31-36.
[21] D'olhaberriague L, Gamissans J M, Espadaler, et al. Transcranial magnetic stimulation as a prognostic tool in stroke[J]. Journal of the Neurological Sciences, 1997, 147(1):73.
[22] Hendricks H T, Hageman G, Van L J. Prediction of recovery from upper extremity paralysis after stroke by measuring evoked potentials[J]. Scandinavian Journal of Rehabilitation Medicine, 1997, 29(3):155.
[23] Rapisarda G, Bastings E, De Noordhout A M, et al. Can motor recovery in stroke patients be predicted by early transcranial magnetic stimulation?[J]. Stroke, 1996, 27(12):2191-2196.
[24] Demirtas-Tatlidede A, Vahabzadeh-Hagh A M, Bernabeu M, et al. Noninvasive brain stimulation in traumatic brain injury[J]. Journal of Head Trauma Rehabilitation, 2012, 27(4):274-292.
[25] Deroide N, Nih L R, Dinh R Y T, et al. Cerebral plasticity:From bench to bedside in stroke treatment[J]. Revue De Medecine Interne, 2010, 31(7):486-492.
[26] 苏敏, 韩立影, 杨卫新, 等. 经颅磁刺激在脑卒中患者上肢功能康复疗效评估中的应用[J]. 中华物理医学与康复杂志, 2016, 38(3):175-179.
[27] Dietz V. Rehabilitation of hand function post-stroke:Application of research based technology[J]. European Journal of Neurology, 2018, 25:641-641.
[28] Kiguchi K, Tanaka T, Fukuda T. Neuro-fuzzy control of a robotic exoskeleton with EMG signals[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(4):481-490.
[29] Guo S, Zhang S, Song Z, et al. Preliminary study on upper limb movement identification based on sEMG signal[C]//2012 ICME International Conference on Complex Medical Engineering (CME). Piscataway NJ:IEEE, 2012:683-688.
[30] Li Z J, Huang B, Ajoudani A, et al. Asymmetric bimanual control of dual-arm exoskeletons for human-cooperative manipulations[J]. IEEE Transactions on Robotics, 2018, 34(1):264-271.
[31] Rogers J, Malliaras G, Someya T. Biomedical devices go wild[J]. Science Advances, 2018, 4(9):2.
[32] Wang T L, Mantini D, Gillebert C R. The potential of real-time fMRI neurofeedback for stroke rehabilitation:A systematic review[J]. Cortex, 2018, 107:148-165.
[33] Masahito M, Noriaki H, Megumi H, et al. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims:A pilot study[J]. Stroke, 2013, 44(4):1091-1098.
[34] Boe S, Gionfriddo A, Kraeutner S, et al. Laterality of brain activity during motor imagery is modulated by the provision of source level neurofeedback[J]. Neuroimage, 2014, 101:159-167.
[35] Young B M, Zack N, Walton L M, et al. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface[J]. Frontiers in Neuroengineering, 2014, 7:26.
[36] Reichert J L, Kober S E, Schweiger D, et al. Shutting down sensorimotor interferences after stroke:A proof-ofprinciple SMR neurofeedback study[J]. Frontiers in Human Neuroscience, 2016, doi:10.3389/fnhum.2016.00348.
[37] 陈树耿, 贾杰. 脑机接口在脑卒中手功能康复中的应用进展[J]. 中国康复理论与实践, 2017, 23(1):23-26.
[38] Sarasola-Sanz A, López-Larraz E, Irastorza-Landa N, et al. An EEG-based brain-machine interface to control a 7-degrees of freedom exoskeleton for stroke rehabilitation[C]//Converging Clinical and Engineering Research on Neurorehabilitation II. Berlin:Springer International Publishing, 2017.
[39] Sarasola-Sanz A, Irastorza-Landa N, Eduardo LópezLarraz, et al. A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients[C]//2017 IEEE International Conference on Rehabilitation Robotics (ICORR). Piscataway NJ:IEEE, 2017:895-900.
[40] Yamato T P, Pompeu J E, Pompeu S M A, et al. Virtual reality for stroke rehabilitation[J]. Physical Therapy, 2016, 96(10):1508-1513.
[41] Santos L F D, Christ O, Mate K, et al. Movement visualisation in virtual reality rehabilitation of the lower limb:A systematic review[J]. Biomedical Engineering Online, 2016, 15(Suppl 3):75-88.
[42] Mottura S, Fontana L, Arlati S, et al. A virtual reality system for strengthening awareness and participation in rehabilitation for post-stroke patients[J]. Journal on Multimodal User Interfaces, 2015, 9(4):341-351.
[43] Trombetta M, Bazzanello Henrique P P, Brum M R, et al. Motion Rehab AVE 3D:A VR-based exergame for post-stroke rehabilitation[J]. Computer Methods and Programs in Biomedicine, 2017, 151:15-20.
[44] Rossi S, Hallett M, Rossini P M, et al. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research[J]. Clinical Neurophysiology, 2009, 120(12):2008-2039.
[45] Bindman L J, Lippold O C, Redfearn J W. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of longlasting after-effects[J]. The Journal of Physiology, 1964, 172:369-382.
[46] Maizey L, Allen C P G, Dervinis M, et al. Comparative incidence rates of mild adverse effects to transcranial magnetic stimulation[J]. Clinical Neurophysiology, 2013, 124(3):536-544.
[47] Bolmont B, Thullier F, Abraini J H. Relationships between mood states and performances in reaction time, psychomotor ability, and mental efficiency during a 31-day gradual decompression in a hypobaric chamber from sea level to 8848 m equivalent altitude[J]. Physiology & Behavior, 2000, 71(5):469-476.
[48] Gilula M F, Kirsch D L. Cranial electrotherapy stimulation review:a safer alternative to psychopharmaceuticals in the treatment of depression[J]. Journal of Neurotherapy, 2005, 9(2):7-26.
[49] 母其文. 交互式经颅磁刺激功能磁共振成像技术进展述评[J]. 世界复合医学, 2015(1):20-23.
[50] Bestmann S, Ruff C C, Blankenburg F, et al. Mapping causal interregional influences with concurrent TMS-fMRI[J]. Experimental Brain Research, 2008, 191(4):383-402.
[51] Fox P, Ingham R, George M S, et al. Imaging human intra-cerebral connectivity by PET during TMS[J]. Neuroreport, 1997, 8(12):2787-2791.
[52] Hanakawa T, Mima T, Matsumoto R, et al. Stimulus-response profile during single-pulse transcranial magnetic stimulation to the primary motor cortex[J]. Cerebral Cortex, 2009, 19(11):2605-2615.
[53] Mochizuki H, Furubayashi T, Hanajima R, et al. Hemoglobin concentration changes in the contralateral hemisphere during and after theta burst stimulation of the human sensorimotor cortices[J]. Experimental Brain Research, 2007, 180(4):667-675.
[54] Shitara H, Shinozaki T, Takagishi K, et al. Time course and spatial distribution of fMRI signal changes during single-pulse transcranial magnetic stimulation to the primary Motor cortex[J]. Neuroimage, 2011, 56(3):1469-1479.
[55] Kozel F A, Tian F, Dhamne S, et al. Using simultaneous repetitive transcranial magnetic stimulation/functional near infrared spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity[J]. Neuroimage, 2009, 47(4):1177-1184.
[56] Furubayashi T, Mochizuki H, Terao Y, et al. Cortical hemoglobin concentration changes underneath the coil after single-pulse transcranial magnetic stimulation:A near-infrared spectroscopy study[J]. Journal of Neurophysiology, 2013, 109(6):1626-1637.
[57] Bohning D E, Shastri A, Nahas Z, et al. Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation[J]. Investigative radiology, 1998, 33(6):336-340.
[58] Casula E P, Tarantino V, Basso D, et al. Low-frequency rTMS inhibitory effects in the primary motor cortex:Insights from TMS-evoked potentials[J]. Neuroimage, 2014, 98:225-232.
[59] Taylor P C J, Walsh V, Eimer M. Combining TMS and EEG to study cognitive function and cortico-cortico interactions[J]. Behavioural Brain Research, 2008, 191(2):141-147.
[60] Nasi T, Maki H, Kotilahti K, et al. Magnetic-stimulation-related physiological artifacts in hemodynamic near-infrared spectroscopy signals[J]. PloS One, 2011, 6(8):e24002.
[61] Park E, Kang M J, Lee A, et al. Real-time measurement of cerebral blood flow during and after repetitive transcranial magnetic stimulation:A near-infrared spectroscopy study[J]. Neuroscience Letters, 2017, 653:78-83.
[62] Mochizuki H, Ugawa Y, Terao Y, et al. Cortical hemoglobin-concentration changes under the coil induced by single-pulse TMS in humans:A simultaneous recording with near-infrared spectroscopy[J]. Experimental Brain Research, 2006, 169(3):302-310.
[63] Groiss S J, Mochizuki H, Furubayashi T, et al. Quadripulse stimulation induces stimulation frequency dependent cortical hemoglobin concentration changes within the ipsilateral motor cortical network[J]. Brain Stimulation, 2013, 6(1):40-48.
[64] Dimyan M A, Cohen L G. Contribution of transcranial magnetic stimulation to the understanding of functional Recovery mechanisms after stroke[J]. Neurorehabilitation and Neural Repair, 2010, 24(2):125-135.
[65] Antal A, Kovacs G, Chaieb L, et al. Cathodal stimulation of human MT + leads to elevated fMRI signal:A tDCS-fMRI study[J]. Restorative Neurology and Neuroscience, 2012, 30(3):255-263.
[66] Nitsche M A, Niehaus L, Hoffmann K T, et al. MRI study of human brain exposed to weak direct current stimulation of the frontal cortex[J]. Clinical Neurophysiology, 2004, 115(10):2419-2423.
[67] Fregni F, Marcondes R, Boggio P S, et al. Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation[J]. European Journal of Neurology, 2006, 13(9):996-1001.
[68] Ang K K, Guan C, Phua K S, et al. Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation[C]//2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway NJ:IEEE, 2012:4128-4131.