Exclusive: Rehabilitation technical aids and engineering

Sensory interaction and control strategy in rehabilitation robot with active training

  • LIANG Wenyuan ,
  • BI Sheng
Expand
  • 1. Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China;
    2. Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China

Received date: 2019-07-02

  Revised date: 2019-09-27

  Online published: 2019-11-30

Abstract

At present, there is a great demand for the rehabilitation training in China. For the patients of disability, the rehabilitation training is the main way for the functional recovery. Compared to the passive training, the rehabilitation robot with active training can induce and encourage the patients to actively participate in the rehabilitation training process, and then achieve a better long-term training effect. In this paper, the rehabilitation robot with active training is presented in the following four parts:the assistive technology, the sensory interaction, the control strategy, and the development tendency. In order to make the training system comfortable for the user, the system should be designed based on the human-centered prospective. The personalized modeling with a movement intention, could improve the control accuracy in the human-machine interaction. Finally, the most important key is to induce the patients to participate in the training actively in order to improve the neural stimulation training effect.

Cite this article

LIANG Wenyuan , BI Sheng . Sensory interaction and control strategy in rehabilitation robot with active training[J]. Science & Technology Review, 2019 , 37(22) : 26 -36 . DOI: 10.3981/j.issn.1000-7857.2019.22.004

References

[1] 中共中央国务院印发《"健康中国2030"规划纲要》[A/OL]. (2016-10-25)[2019-03-31]. http://www.gov.cn/zhengce/2016-10/25/content_5124174.htm.
[2] 2017年经济运行稳中向好、好于预期[EB/OL]. (2018-01-18)[2019-03-31]. http://www.stats.gov.cn/tjsj/zxfb/201801/t20180118_1574917.html.
[3] Balossier A, Etard O, Descat C, et al. Epidural cortical stimulation as a treatment for poststroke aphasia:A systematic review of the literature and underlying neurophysiological mechanisms[J]. Neurorehabilitation & Neural Repair, 2015, 30(2):17-27.
[4] 黄毅, 佟晓光. 中国人口老龄化现状分析[J]. 中国老年学, 2012, 32(21):4853-4855.
[5] 李晓捷. 中国脑性瘫痪康复的现状、调整及发展战略[J]. 中国康复医学杂志, 2016, 31(1):6-8.
[6] 2017年中国残疾人事业发展统计公报[残联发(2018) 24号] [EB/OL].[2019-03-31]. http://www.cdpf.org.cn/zcwj/zxwj/201804/t20180426_625574.shtml.
[7] 邱杨. 我国人口老龄化对医疗支出的影响研究[J]. 人口与社会, 2015(2):95-102.
[8] 中国护士数量缺口达几百万. 薪酬低导致留不住人[N]. 人民日报, 2016-05-20.
[9] 侯增广, 赵新刚, 程龙, 等. 康复机器人与智能辅助系统的研究进展[J]. 自动化学报, 2016, 42(12):1765-1779.
[10] Hu J, Hou Z, Zhang F, et al. Training strategies for a lower limb rehabilitation robot based on impedance control[C]//2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway NJ:IEEE, 2012:6032-6035.
[11] Wilson R D, Page S J, Delahanty M, et al. Upper-limb recovery after stroke:A randomized controlled trial comparing EMG-triggered, cyclic, and sensory electrical stimulation[J]. Neurorehabilitation & Neural Repair, 2016, 30(10):978-987.
[12] 明东, 蒋晟龙, 王忠鹏, 等. 基于人机信息交互的助行外骨骼机器人技术进展[J]. 自动化学报, 2017, 43(7):1089-1100.
[13] 毕胜, 季林红, 纪树荣, 等. 依据神经康复原则应用机器人对脑卒中和脑外伤患者上肢运动功能障碍的康复训练[J]. 中华物理医学与康复杂志, 2006, 28(8):523-527.
[14] Riener R, Lunenburger L, Maier I C, et al. Locomotor training in subjects with sensori-motor deficits:An overview of the robotic gait orthosis lokomat[J]. Journal of Healthcare Engineering, 2010, 1(2):197-216.
[15] Hwang J, Shin Y, Park J H, et al. Effects of Walkbot gait training on kinematics, kinetics, and clinical gait function in paraplegia and quadriplegia[J]. NeuroRehabilitation, 2018, 42(4):481-489.
[16] Ji J C, Guo S, Xi F F. Force analysis and evaluation of a pelvic support walking robot with joint compliance[J]. Journal of Healthcare Engineering, 2018, doi:10.1155/2018/9235023.
[17] 李剑, 张秀峰, 潘国新. 减重步行康复训练机器人的设计及其临床应用[J]. 医用生物力学, 2012, 27(6):681-686.
[18] 潘国新, 张秀峰, 李剑. 偏瘫步行康复训练机器人减重支撑系统的研究[J]. 中国康复医学杂志, 2013, 28(11):1041-1045.
[19] ReWalk[EB/OL].[2019-03-31]. https://rewalk.com.
[20] HAL[EB/OL].[2019-03-31]. https://www.cyberdyne.jp.
[21] Yu Y, Liang W Y. Design optimization for parallel mechanism using on human hip joint power assisting based on manipulability inclusive principle[C]//2012 IEEE International Conference on Robotics & Automation. Piscataway, NJ:IEEE, 2012:2306-2312.
[22] Lerner Z F, Damiano D L, Bulea T C. The effects of exoskeleton assisted knee extension on lower-extremity gait kinematics, kinetics, and muscle activity in children with cerebral palsy[J]. Scientific Reports, 2017, 7(1):13512.
[23] Jovic J, Escande A, Ayusawa K, et al. Humanoid and human inertia parameter identification using hierarchical optimization[J]. IEEE Transactions on Robotics, 2016, 32(3):726-735.
[24] Liang W Y. Inertia parameters of human body identification by using the inequality constraints derived from the dynamic equations[C]//2018 IEEE International Conference on Cyborg and Bionic Systems. Piscataway NJ:IEEE, 2018:549-553.
[25] Lu Q, Ma O. Identification of Human Inertia Properties Using a Momentum-Based Approach[J]. Journal of Biomechanical Engineering, 2012, 134(10):101006.
[26] Bernhardt M, Frey M, Colombo G, et al. Hybrid ForcePosition Control Yields Cooperative Behaviour of the Rehabilitation Robot LOKOMAT[C]//2005 International Conference on Rehabilitation Robotics, IEEE. Piscataway, NJ:IEEE, 2005:536-539.
[27] Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete Spinal cord injury[J]. American Journal of Physical Medicine & Rehabilitation, 2012, 91(11):911-921.
[28] Han R, Tao C, Huang J, et al. Design and control of an intelligent walking-aid robot[C]//2014 International Conference on Modelling, Identification & Control. IEEE. Piscataway NJ:IEEE, 2014, doi:10.1109/icmic.2014.7020727.
[29] Wen T, Xu Z, Xiang C, et al. Multi-scale complexity analysis of muscle co-activation during gait in children with cerebral palsy[J]. Frontiers in Human Neuroscience, 2015, 9:367.
[30] Huo C, Zhang M, Bu L, et al. Effective connectivity in response to posture changes in elderly subjects as assessed using functional near-infrared spectroscopy[J]. Frontiers in Human Neuroscience, 2018, 12:98.
[31] HAL[EB/OL].[2019-03-31]. https://robots.ieee.org/robots/hal.
[32] Awad L N, Bae J, et al. A soft robotic exosuit improves walking in patients after stroke[J]. Science Translational Medicine, 2017, 9(400):eaai9084.
[33] Li Z, Wang B, Sun F, et al. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.[J]. IEEE Journal of Biomedical & Health Informatics, 2014, 18(3):1043-1050.
[34] 丁其川, 赵新刚, 李自由, 等. 基于自更新混合分类模型的肌电运动识别方法[J]. 自动化学报, 2018, 45(8):1464-1474.
[35] 赵晨钰, 毕胜, 卢茜, 等. 脑卒中恢复期患者肘关节最大等长性屈伸运动时肩肘肌群表面肌电信号特征性研究[J]. 中国康复医学杂志, 2018, 33(9):1036-1042.
[36] 毕胜, 刘小燮. 脑机接口在康复医学中的应用[C]//中国康复医学会第十二届全国运动疗法学术大会汇编资料. 北京:中国康复医学会, 2014:116-119.
[37] 刘小燮, 毕胜. 脑机接口技术的康复应用及研究进展[J]. 中国康复医学杂志, 2014, 29(10):982-986.
[38] Hochberg L R, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm[J]. Nature, 2012, 485(7398):372-5.
[39] Vargas P A, Brasil F L, Mcconnell A C, et al. Combining soft robotics and brain-machine interfaces for stroke rehabilitation[M]//Converging Clinical and Engineering Research on Neurorehabilitation II. Berlin:Springer International Publishing, 2017.
[40] Sarasola-Sanz A, López-Larraz E, Irastorza-Landa N, et al. An EEG-based brain-machine interface to control a 7-degrees of freedom exoskeleton for stroke rehabilitation[M]//Converging Clinical and Engineering Research on Neurorehabilitation II. Berlin:Springer International Publishing, 2017.
[41] Rossignol S. Locomotion and its recovery after spinal injury[J]. Current Opinion in Neurobiology, 2000, 10(6):708-716.
[42] Poon C S. Sensorimotor learning and information processing by Bayesian internal models[C]//The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway NJ:IEEE, 2005:4481-4482.
[43] Oblak E, Scharnowski F, Sulzer J, et al. Closed-loop brain training the science of neurofeedback[J]. Nature Review Neuroscience, 2017, 18:86-100
[44] 励建安, 毕胜, 黄晓林. DeLisa物理医学与康复医学理论与实践[M]. 北京:人民卫生出版社, 2013.
[45] Dursun E, Dursun N, Alican D. Effects of biofeedback treatment on gait in children with cerebral palsy[J]. Disability & Rehabilitation, 2004, 26(2):116-120.
[46] Morris M E, Matyas T A, Bach T M, et al. Electrogoniometric feedback:Its effect on genu recurvatum in stroke.[J]. Archives of Physical Medicine and Rehabilitation 1992, 73(12):1147-1154.
[47] Walker C, Brouwer B J. Use of visual feedback in retraining balance following acute stroke[J]. Physical Therapy, 2000, 80(9):886-895.
[48] 刘小燮, 毕胜, 高小榕, 等. 基于运动想象的脑机交互康复训练新技术对脑卒中大脑可塑性影响[J]. 中国康复医学杂志, 2013, 28(2):97-102.
[49] Qiu S, Yi W B, Xu J P, et al. Event-related beta EEG changes during active, passive movement and functional electrical stimulation of the lower limb[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2016, 24(2):283-290.
[50] Noma T, Matsumoto S, Shimodozono M, et al. Novel neuromuscular electrical stimulation system for the upper limbs in chronic stroke patients:A feasibility study[J]. American Journal of Physical Medicine & Rehabilitation, 2014, 93(6):503.
[51] Marchal-Crespo L, Reinkensmeyer D J. Review of control strategies for robotic movement training after neurologic injury[J]. Journal of NeuroEngineering & Rehabilitation, 2009, 6(1):20.
[52] Sanchez R J, Liu J, Rao S, et al. Automating arm movement training following severe stroke:Functional exercises with quantitative feedback in a gravity-reduced environment[J]. IEEE Transactions on Neural and Rehabilitation Engineering, 2006, 14(3):378-389.
[53] Yu Y, Nagai M, Iwashita H, et al. Development of anactive arm weight bearing unit and its application to hemiplegic arm rehabilitation[C]//2014 Proceedings of the SICE Annual Conference. Piscataway NJ:IEEE, 2014:2082-2087.
[54] Krebs H I, Palazzolo J J, Dipietro L, et al. Rehabilitation robotics:Performance based progressive robot-assisted therapy[J]. Autonomous Robots, 2003, 15:7-20.
[55] Chen F, Yu Y, Ge Y, et al. A PAWL for enhancing strength and endurance during walking using interaction force and dynamical information[M]//Climbing and Walking Robots:Towards New Applications. InTech, 2007.
[56] Aguirre-Ollinger G, Nagarajan U, Goswami A. An admittance shaping controller for exoskeleton assistance of the lower extremities[M]. Kluwer Academic Publishers, 2016.
[57] Ahmed A I A, Cheng H, Abdalla A R, et al. Modified admittance control for maneuverable human-powered augmentation lower exoskeleton systems[C]//2018 International Conference on Advanced Robotics & Mechatronics. Piscataway NJ:IEEE, 2018:7-12.
[58] Adler S S, Beckers D, Buck M. PNF in Practice[M]. Berlin Heidelberg:Springer, 2014.
[59] Morris S L, Dodd K J, Morris M E. Outcomes of progressive resistance strength training following stroke:A systematic review[J]. Clinical Rehabilitation, 2004, 18:27-39.
[60] Dozono J, Schmidt S, Jue M. Lum P:Combined functional task practice and dynamic high intensity resistance training promotes recovery of upper-extremity motor function in post-stroke hemiparesis:A case study[J]. Journal of Neurologic Physical Therapy, 2006, 30(3):99-115.
[61] Ren Y, Wu Y N, Yang C Y, et al. Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation[J]. IEEE Transactions on Neural Systemsand Rehabilitation Engineering, 2017, 25(6):589-596.
[62] Zhou Z, Sun Y, Wang N, et al. Robot-assisted rehabilitation of ankle plantar flexors spasticity:A 3-month study with proprioceptive neuromuscular facilitation[J]. Frontiers in Neurorobotics, 2016, 10:16.
[63] Jutinico A L, Jaimes J C, Escalante F M, et al. Impedance control for robotic rehabilitation:A robust markovian approach[J]. Frontiers in Neurorobotics, 2017, 11:43.
[64] Kang J, Martelli D, Vashita V, et al. Robot-driven downward pelvic pull to improve crouch gait in children with cerebral palsy[J]. Nature Science Robotics, 2017, 2(8):eaan2634.
[65] Pledgie S, Barner K E, Agrawal S K, et al. Tremor suppression through impedance control[J]. IEEE Transactions on Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, 2000, 8(1):53-59.
[66] Qiu Z, Chen S, Daly I, et al. BCI-based strategies on stroke rehabilitation with avatar and fes feedback[J]. arXiv, 2018, 1805.04986.
[67] Yu Y, Nakanishi Y, Kawahira K, et al. Production of effective stretch reflex by a pronation and supination function recovery training device for hemiplegic forearms[C]//IEEE International Conference on Robotics and Biomimetics 2015. Piscataway NJ:IEEE, 2015:150-157.
[68] Yu Y, Iwashita H, Kawahira K, et al. Development of rehabilitation device for hemiplegic fingers by finger-expansion facilitation exercise with stretch reflex[C]//2014 IEEE International Conference on Robotics and Biomimetics. Piscataway NJ:IEEE, 2014:1317-1323.
[69] Cheung C K, Niu C M, Li S, et al. A novel FES strategy for post-stroke rehabilitation based on the natural organization of neuromuscular control[J]. IEEE Reviews in Biomedical Engineering, 2018, 12:154-167.
[70] Kai S, Duarte J E, Martin G, et al. The Myosuit:Bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers[J]. Frontiers in Neurorobotics, 2017, 11:57.
[71] Yu Y, Liang W Y. Manipulability inclusive principle for hip joint assistive mechanism design optimization[J]. International Journal of Advanced Manufacturing Technology, 2014, 70(5-8):929-945.
[72] Zhang S, Zhang X, Cao S, et al. Myoelectric pattern recognition based on muscle synergies for simultaneous control of dexterous finger movements[J]. IEEE Transactions on Human-Machine Systems, 2017:47(4):576-582.
[73] He C. Forward prediction in the posterior parietal cortex and dynamic brain-machine interface[J]. Frontiers in Integrative Neuroscience, 2016, 10:35.
[74] Charalambous C C, Bowden M G, Adkins D L. Motor cortex and motor cortical interhemispheric communication in walking after stroke:The roles of transcranial magnetic stimulation and animal models in our current and future understanding[J]. Neurorehabilitation and Neural Repair, 2016, 30(1):94-102.
[75] Zhuang K Z, Sommer N, Mendez V, et al. Shared human-robot proportional control of a dexterous myoelectric prosthesis[J]. Nature Machine Intelligence, 2019, 1:400-411.
Outlines

/