Exclusive: Science and Technology Review in 2019

Recent progress in micro and nanomechanics: A concise review

  • JIANG Jin-Wu ,
  • CHANG Tienchong
Expand
  • Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics;School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China

Received date: 2019-12-31

  Revised date: 2020-01-10

  Online published: 2020-02-29

Abstract

Mechanical properties for nanomaterial are sensitive to the dimension, surface, and other physical properties of the nanomaterial, so they can be effectively tuned in varying degrees. As a result, nanomaterials have plenty of novel properties like super-hardness, ultra-light, extreme fracture strength, etc. These fantastic nanomechanics phenomena have attracted a worldwide research interest in the past few decades. The article concisely reviews some key progresses in the nanomechanics field in 2019.

Cite this article

JIANG Jin-Wu , CHANG Tienchong . Recent progress in micro and nanomechanics: A concise review[J]. Science & Technology Review, 2020 , 38(1) : 6 -18 . DOI: 10.3981/j.issn.1000-7857.2020.01.001

References

[1] Kroto H W, Heath J R, O'Brien S C, et al. C60:Buckminsterfullerene[J]. Nature, 1985, 318:162.
[2] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354:56-58.
[3] Geim A K. Graphene:Status and prospects[J]. Science, 2009, 324:1530-1534.
[4] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. PNAS, 2005, 102:10451-10453.
[5] Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499:419-425.
[6] Xu Z P, Zheng Q S. Micro-and nano-mechanics in China:A brief review of recent progress and perspectives[J]. Science China Physics, Mechanics & Astronomy, 2018, 61:074601.
[7] Yang W, Wang H T, Li T F, et al. X-Mechanics-An endless frontier[J]. Science China Physics, Mechanics & Astronomy, 2019, 62:14601.
[8] Banerjee A, Bernoulli D, Zhang H T, et al. Ultralarge elastic deformation of nanoscale diamond[J]. Science, 2018, 360:6386.
[9] Zhang H T, Fung K Y, Zhuang Y, et al. Fracture of a silicon nanowire at ultra-large elastic strain[J]. Acta Mechanica, 2019, 230:1441-1449.
[10] Sun H L, Chen L Y, Sun S, et al. Size-and temperaturedependent Young's modulus and size-dependent thermal expansion coefficient of nanowires[J]. Science China Technological Sciences, 2019, 61:687-698.
[11] Liu W B, Chen L R, Cheng Y Y, et al. Model of nanoindentation size effect incorporating the role of elastic deformation[J]. Journal of the Mechanics and Physics of Solids, 2019, 126:245-255.
[12] Ren Y P, Cao G X. Adhesive boundary effect on freestanding indentation characterization of chemical vapor deposition graphene[J]. Carbon, 2019, 153:438-446.
[13] Ji J C, Zhao J H, Guo W L. Novel nonlinear coarsegrained potentials of carbon nanotubes[J]. Journal of the Mechanics and Physics of Solids, 2019, 128:79-104.
[14] Wen X, Li D F, Tan K, et al. Flexoelectret:An electret with a tunable flexoelectriclike response[J]. Physical Review Letters, 2019, 122:148001.
[15] Shi W H, Guo Y F, Zhang Z H, et al. Strain gradient mediated magnetism and polarization in monolayer VSe2[J]. The Journal of Physical Chemistry C, 2019, 123:24988-24993.
[16] Cai H F, Guo Y F, Gao H J, et al. Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers:A first-principles study[J]. Nano Energy, 2019, 56:33-39.
[17] Hu Z L, Zhang Z H, Liu L R, et al. Extreme pseudomagnetic fields in carbon nanocones by simple loads[J]. Journal of the Mechanics and Physics of Solids, 2019, 124:1-9.
[18] Liu X F, Guo W L. Shear strain tunable exciton dynamics in two-dimensional semiconductors[J]. Physical Review B, 2019, 99:035401.
[19] Zeng X G, Wei Y J. The effective fracture strength and fracture toughness of solids with energy dissipation confined to localized strips[J]. International Journal of Plasticity, 2019, 120:47-63.
[20] Sha Z D, Teng Y, Poh L H, et al. Notch strengthening in nanoscale metallic glasses[J]. Acta Materialia, 2019, 169:147-154.
[21] Dong S H, Xia Y X, Huang R Y, et al. Modulating mechanical anisotropy of two-dimensional materials by controlling their defects[J]. Carbon, 2020, 158:77-88.
[22] Wang P, Xiang Y H, Wang X G, et al. New insight for mechanical properties of metals processed by severe plastic deformation[J]. International Journal of Plasticity, 2019, 123:22-37.
[23] Chen L R, Liu W B, Yu L, et al. Probabilistic and constitutive models for ductile-to-brittle transition in steels:A competition between cleavage and ductile fracture[J]. Journal of the Mechanics and Physics of Solids, 2019, 135:103809.
[24] Peng S Y, Wei Y J, Jin Z H, et al. Supersonic screw dislocations gliding at the shear wave speed[J]. Physical Review Letters, 2019, 122:045501.
[25] Wang Y, Yuan L C, Zhang S J, et al. The influence of combined gradient structure with residual stress on crack-growth behavior in medium carbon steel[J]. Engineering Fracture Mechanics, 2019, 209:369-381.
[26] Cheng Y Y, Yu L, Chen L R, et al. Failure of fracture toughness criterion at small scales[J]. Physical Review Materials, 2019, 3:113602.
[27] Dai Z H, Wang G R, Zheng Z Y, et al. Mechanical responses of boron-doped monolayer graphene[J]. Carbon, 2019, 147:594-601.
[28] Ren X B, Dong J C, Yang P, et al. Grain boundaries in chemical-vapor-deposited atomically thin hexagonal boron nitride[J]. Physical Review Materials, 2019, 3:014004.
[29] Zhao Z Q, Hang Y, Zhang Z H, et al. Topological hybrid nodal-loop semimetal in a carbon allotrope constructed by interconnected Riemann surfaces[J]. Physical Review B, 2019, 100:115420.
[30] Zhao Z Q, Zhang Z H, Guo W L. A family of all sp 2-bonded carbon allotropes of topological semimetals with strain-robust nodal-lines[J]. Journal of Materials Chemistry C, 2019, doi:10.1039/C9TC05470G.
[31] Bu Y Q, Li Z M, Liu J B, et al. Nonbasal slip systems enable a strong and ductile hexagonal-close-packed high-entropy phase[J]. Physical Review Letters, 2019, 122:075502.
[32] Yuan Y S, Li X Y, Yang W. Low-angle grain boundary structures and size effects of nickel nanolaminated structures[J]. Journal of the Mechanics and Physics of Solids, 2019, 130:280-296.
[33] Zhang X, Zhong L, Mateos A, et al. Theoretical strength and rubber-like behaviour in micro-sized pyrolytic carbon[J]. Nature nanotechnology, 2019, 14:762-769.
[34] Yu Z L, Qin B, Ma Z Y, et al. Superelastic hard carbon nanofiber aerogels[J]. Advanced Materials, 2019, 31:1900651.
[35] Zhang X, Vyatskikh A, Gao H, et al. Lightweight, flawtolerant, and ultrastrong nanoarchitected carbon[J]. Proceedings of the National Academy of Sciences, 2019, 116:6665-6672.
[36] Zhang X, Wang Y J, Ding B, et al. Design, fabrication, and mechanics of 3D micro-/nanolattices[J]. Small, 2019, doi:10.1002/smll.201902842.
[37] Liang Y J, Wang L J, Wen Y R, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys[J]. Nature Communications, 2018, 9:4063.
[38] Xie F, Xu Z, Jensen A C S, et al. Hard-soft carbon composite anodes with synergistic sodium storage performance[J]. Advanced Functional Materials, 2019, 29:1901072.
[39] Dong X Z, Xu H Y, Chen H, et al. Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery[J]. Carbon, 2019, 148:134-140.
[40] Liu Y J, Li P, Wang F, et al. Rapid roll-to-roll production of graphene film using intensive Joule heating[J]. Carbon, 2019, 155:462-468.
[41] Liu Y J, Yang M C, Pang K, et al. Environmentally stable macroscopic graphene film with specific electrical conductivity exceeding metals[J]. Carbon, 2020, 156:205-211.
[42] Pan F, Li Y L, Li Z Y, et al. 3D pixel mechanical metamaterials[J]. Advanced Materials, 2019, 31:1900548.
[43] Wang J, Huang Y, Chen W Q. Tailoring edge and interface states in topological metastructures exhibiting the acoustic valley Hall effect[J]. Science China Physics, Mechanics & Astronomy, 2019, 63:224611.
[44] Li G Y, Zhu M Y, Gong W B, et al. Boron nitride aerogels with super-flexibility ranging from liquid nitrogen temperature to 1000℃[J]. Advanced Functional Materials, 2019, 29:1900188.
[45] Gao E L. Measuring the radial elasticity of carbon nanotube yarns[J]. Carbon, 2020, 157:402-407.
[46] Chen Z, Wu T H, Nian G D, et al. Ron Resch origami pattern inspired energy absorption structures[J]. Journal of Applied Mechanics, 2019, 86:011005.
[47] Wen Y Y, Gao E L, Hu Z X, et al. Chemically modified graphene films with tunable negative Poisson's ratios[J]. Nature Communications, 2019, 10:2446.
[48] Xu G, Liu Y Y, Hong J W, et al. Lithium intercalation drives mechanical properties deterioration in bulk and single-layered black phosphorus:A first-principles study[J]. 2D Materials, 2020, doi:10.1088/2053-1583/ab6705.
[49] Wang H P, Xue X D, Jiang Q Q, et al. Primary nucleation-dominated chemical vapor deposition growth for uniform graphene monolayers on dielectric substrate[J]. Journal of the American Chemical Society, 2019, 141:11004-11008.
[50] Wu R Z, Ding Y, Yu K M, et al. Edge-epitaxial growth of graphene on Cu with a hydrogen-free approach[J]. Chemistry of Materials, 2019, 31:2555-2562.
[51] He W Z, Geng D C, Xu Z P. Pattern evolution characterizes the mechanism and efficiency of CVD graphene growth[J]. Carbon, 2019, 141:316-322.
[52] Li J D, Hu Z L, Yi Y F, et al. Hexagonal boron nitride growth on Cu-Si ALloy:Morphologies and large domains[J]. Small, 2019, 15:1805188.
[53] Liu Z. Investigation of temperature and feature size effects on deformation of metals by superplastic nanomolding[J]. Physical Review Letters, 2019, 122:016101.
[54] Liu Z, Han G X, Sohn S, et al. Nanomolding of crystalline metals:The smaller the easier[J]. Physical Review Letters, 2019, 122:036101.
[55] Ren H T, Xiong Z X, Wang E Z, et al. Watching dynamic self-assembly of web buckles in strained MoS2 thin films[J]. ACS Nano, 2019, 13:3106-3116.
[56] Shui L Q, Liu Y L, Li B, et al. Mechanisms of electromechanical wrinkling for highly stretched substrate-free dielectric elastic membrane[J]. Journal of the Mechanics and Physics of Solids, 2019, 122:520-537.
[57] Yin S F, Li B, Cao Y P, et al. Surface wrinkling of anisotropic films bonded on a compliant substrate[J]. International Journal of Solids and Structures, 2018, 141:219-231.
[58] Liu J P, Zhong X Y, Cheng Z B, et al. Post-buckling analysis of a rod confined in a cylindrical tube[J]. Journal of Applied Mechanics, 2018, 85:071001.
[59] Liu J P, Zhong X Y, Cheng Z B, et al. Buckling of a slender rod confined in a circular tube:Theory, simulation, and experiment[J]. International Journal of Mechanical Sciences, 2018, 140:288-305.
[60] Li B, Zeng C Q, Yin S F, et al. Regulating wrinkling patterns by periodic surface stiffness in film-substrate structures[J]. Science China Technological Sciences, 2019, 62:747-754.
[61] Yu S J, Ma L, Zhang J W, et al. Localization of wrinkle patterns by crack-tip induced plasticity:Experiments and simulations[J]. International Journal of Solids and Structures, 2019, 178-179:108-119.
[62] Yu S J, Sun Y D, Zhang X F, et al. Hierarchical wrinkles and oscillatory cracks in metal films deposited on liquid stripes[J]. Physical Review E, 2019, 99:062802.
[63] Yu S J, Ma L, Sun Y D, et al. Controlled wrinkling patterns in periodic thickness-gradient films on polydimethylsiloxane substrates[J]. Langmuir, 2019, 35:7146-7154.
[64] Sui J, Chen J, Zhang X, et al Symplectic analysis of wrinkles in elastic layers with graded stiffnesses[J]. Journal of Fluid Mechanics, 2019, 86:011008.
[65] Pang Z Q, Deng B, Liu Z F, et al. Defects guided wrinkling in graphene on copper substrate[J]. Carbon, 2019, 143:736-742.
[66] Wang T, Yang Y F, Fu C B, et al. Wrinkling and smoothing of a soft shell[J]. Journal of the Mechanics and Physics of Solids, 2020, 134:103738.
[67] Liu F, Xu F, Fu C B. Orientable wrinkles in stretched orthotropic films[J]. Extreme Mechanics Letters, 2019, 33:100579.
[68] Pan F, Wang G R, Liu L Q, et al. Bending induced interlayer shearing, rippling and kink buckling of multilayered graphene sheets[J]. Journal of the Mechanics and Physics of Solids, 2019, 122:340-363.
[69] Wang G R, Dai Z H, Xiao J K, et al. Bending of multilayer van der waals materials[J]. Physical Review Letters, 2019, 123:116101.
[70] Cui X P, Kong Z Z, Gao E L, et al. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol[J]. Nature Communications, 2018, 9:1301.
[71] Pang W B, Cheng X, Zhao H J, et al. Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms[J]. National Science Review, 2020, doi:10.1093/nsr/nwz164.
[72] Zheng M J, Chen Y Q, Liu Z, et al. Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates[J]. Microsystems & Nanoengineering, 2019, 5:1-11.
[73] Park J K, Nan K, Luan H W, et al. Remotely triggered assembly of 3D mesostructures through shape-memory effects[J]. Advanced Materials, 2019, doi:10.1002/adma.201905715.
[74] Liu Y, Wang X J, Xu Y M, et al. Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling[J]. Proceedings of the National Academy of Sciences, 2019, 116:15368-15377.
[75] Xue Z G, Song H L, Rogers J A, et al. Mechanicallyguided structural designs in stretchable inorganic electronics[J]. Advanced Materials, 2019, 31:1902254.
[76] Zhao H B, Li K, Han M D, et al. Buckling and twisting of advanced materials into morphable 3D mesostructures[J]. Proceedings of the National Academy of Sciences, 2019, 116:13239-13248.
[77] Xu Z, Fan Z C, Fu H R, et al. Optimization-based approach for the inverse design of ribbon-shaped three-dimensional structures assembled through compressive buckling[J]. Physical Review Applied, 2019, 11:054053.
[78] Xu Z, Fan Z C, Zi Y Y, et al. An inverse design method of buckling-guided assembly for ribbon-type 3D structures[J]. Journal of Applied Mechanics, 2020, 87:031004.
[79] Lan L Y, Yin T H, Jiang C M, et al. Highly conductive 1D-2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator[J]. Nano Energy, 2019, 62:319-328.
[80] Li B W, Yin J, Liu X F, et al. Probing van der Waals interactions at two-dimensional heterointerfaces[J]. Nature Nanotechnology, 2019, 14:567-572.
[81] Zhao S J, Zhang Z H, Wu Z H, et al. The impacts of adhesion on the wear property of graphene[J]. Advanced Materials Interfaces, 2019, 6:1900721.
[82] Gao E L, Lin S Z, Qin Z, et al. Mechanical exfoliation of two-dimensional materials[J]. Journal of the Mechanics and Physics of Solids, 2018, 115:248-262.
[83] Li S, Yao Q Z, Li Q Y, et al. Contact stiffness of regularly patterned multi-asperity interfaces[J]. Journal of the Mechanics and Physics of Solids, 2018, 111:277-289.
[84] He Z Z, Zhu Y B, Xia J, et al. Optimization design on simultaneously strengthening and toughening graphenebased nacre-like materials through noncovalent interaction[J]. Journal of the Mechanics and Physics of Solids, 2019, 133:103706.
[85] Xia J, Zhu Y B, He Z Z, et al. Superstrong noncovalent interface between melamine and graphene oxide[J]. ACS Applied Materials & Interfaces, 2019, 11:17068-17078.
[86] Chang Z H, Yang R G, Wei Y J. The linear-dependence of adhesion strength and adhesion range on temperature in soft membranes[J]. Journal of the Mechanics and Physics of Solids, 2019, 132:103697.
[87] Chen P J, Chen S H, Peng J, et al. The interface behavior of a thin film bonded imperfectly to a finite thickness gradient substrate[J]. Engineering Fracture Mechanics, 2019, 217:106529.
[88] Li X J, Peng Z L, Yang Y Z, et al. Tunable adhesion of a bio-inspired micropillar arrayed surface actuated by a magnetic field[J]. Journal of Applied Mechanics, 2019, 86:011007.
[89] Zhu F Y, Guo Z R, Chang T C. Nanoscale continuous cyclic motion driven by a stable thermal field[J]. Applied Materials Today, 2019, 18:100520.
[90] Song A S, Shi R Y, Lu H L, et al. Modelling atomicscale electrical contact quality across two-dimensional interfaces[J]. Nano Letters, 2019, 19:3654-3662.
[91] Zhang H, Xiong J H, Ye M, et al. Interfacial properties of monolayer antimonene devices[J]. Physical Review Applied, 2019, 11:064001.
[92] Xue Y X, Chen Y, Cai K, et al. Local strain field engineering on interfacial thermal resistance of graphene nanoribbon[J]. Applied Physics Letters, 2018, 112:021604.
[93] Song Y M, Mandelli D, Hod O, et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions[J]. Nature Materials, 2018, 17:894.
[94] Wang J, Cao W, Song Y M, et al. Generalized scaling law of structural superlubricity[J]. Nano Letters, 2019, doi:10.1021/acs.nanolett.9b02656.
[95] Qu C Y, Shi S L, Ma M, et al. Rotational instability in superlubric joints[J]. Physical Review Letters, 2019, 122:246101.
[96] Qu C Y, Cao W, Liu B T, et al. Direct measurement of adhesions of liquids on graphite[J]. The Journal of Physical Chemistry C, 2019, doi:10.1021/acs.jpcc.9b00900。
[97] Huang X Y, Lin L, Zheng Q S. Superlubric nanogenerators with superb performances[J]. arXiv:1911.04764, 2019.
[98] Hod O, Meyer E, Zheng Q S, et al. Structural superlubricity and ultralow friction across the length scales[J]. Nature, 2018, 563:485-492.
[99] Song Y M, Qu C Y, Ma M, et al. Structural superlubricity based on crystalline materials[J]. Small, 2019, doi:10.1002/smll.201903018.assembly of 3D mesostructures through shape-memory effects[J]. Advanced Materials, 2019, doi:10.1002/adma.201905715.
[74] Liu Y, Wang X J, Xu Y M, et al. Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling[J]. Proceedings of the National Academy of Sciences, 2019, 116:15368-15377.
[75] Xue Z G, Song H L, Rogers J A, et al. Mechanicallyguided structural designs in stretchable inorganic electronics[J]. Advanced Materials, 2019, 31:1902254.
[76] Zhao H B, Li K, Han M D, et al. Buckling and twisting of advanced materials into morphable 3D mesostructures[J]. Proceedings of the National Academy of Sciences, 2019, 116:13239-13248.
[77] Xu Z, Fan Z C, Fu H R, et al. Optimization-based approach for the inverse design of ribbon-shaped three-dimensional structures assembled through compressive buckling[J]. Physical Review Applied, 2019, 11:054053.
[78] Xu Z, Fan Z C, Zi Y Y, et al. An inverse design method of buckling-guided assembly for ribbon-type 3D structures[J]. Journal of Applied Mechanics, 2020, 87:031004.
[79] Lan L Y, Yin T H, Jiang C M, et al. Highly conductive 1D-2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator[J]. Nano Energy, 2019, 62:319-328.
[80] Li B W, Yin J, Liu X F, et al. Probing van der Waals interactions at two-dimensional heterointerfaces[J]. Nature Nanotechnology, 2019, 14:567-572.
[81] Zhao S J, Zhang Z H, Wu Z H, et al. The impacts of adhesion on the wear property of graphene[J]. Advanced Materials Interfaces, 2019, 6:1900721.
[82] Gao E L, Lin S Z, Qin Z, et al. Mechanical exfoliation of two-dimensional materials[J]. Journal of the Mechanics and Physics of Solids, 2018, 115:248-262.
[83] Li S, Yao Q Z, Li Q Y, et al. Contact stiffness of regularly patterned multi-asperity interfaces[J]. Journal of the Mechanics and Physics of Solids, 2018, 111:277-289.
[84] He Z Z, Zhu Y B, Xia J, et al. Optimization design on simultaneously strengthening and toughening graphenebased nacre-like materials through noncovalent interaction[J]. Journal of the Mechanics and Physics of Solids, 2019, 133:103706.
[85] Xia J, Zhu Y B, He Z Z, et al. Superstrong noncovalent interface between melamine and graphene oxide[J]. ACS Applied Materials & Interfaces, 2019, 11:17068-17078.
[86] Chang Z H, Yang R G, Wei Y J. The linear-dependence of adhesion strength and adhesion range on temperature in soft membranes[J]. Journal of the Mechanics and Physics of Solids, 2019, 132:103697.
[87] Chen P J, Chen S H, Peng J, et al. The interface behavior of a thin film bonded imperfectly to a finite thickness gradient substrate[J]. Engineering Fracture Mechanics, 2019, 217:106529.
[88] Li X J, Peng Z L, Yang Y Z, et al. Tunable adhesion of a bio-inspired micropillar arrayed surface actuated by a magnetic field[J]. Journal of Applied Mechanics, 2019, 86:011007.
[89] Zhu F Y, Guo Z R, Chang T C. Nanoscale continuous cyclic motion driven by a stable thermal field[J]. Applied Materials Today, 2019, 18:100520.
[90] Song A S, Shi R Y, Lu H L, et al. Modelling atomicscale electrical contact quality across two-dimensional interfaces[J]. Nano Letters, 2019, 19:3654-3662.
[91] Zhang H, Xiong J H, Ye M, et al. Interfacial properties of monolayer antimonene devices[J]. Physical Review Applied, 2019, 11:064001.
[92] Xue Y X, Chen Y, Cai K, et al. Local strain field engineering on interfacial thermal resistance of graphene nanoribbon[J]. Applied Physics Letters, 2018, 112:021604.
[93] Song Y M, Mandelli D, Hod O, et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions[J]. Nature Materials, 2018, 17:894.
[94] Wang J, Cao W, Song Y M, et al. Generalized scaling law of structural superlubricity[J]. Nano Letters, 2019, doi:10.1021/acs.nanolett.9b02656.
[95] Qu C Y, Shi S L, Ma M, et al. Rotational instability in superlubric joints[J]. Physical Review Letters, 2019, 122:246101.
[96] Qu C Y, Cao W, Liu B T, et al. Direct measurement of adhesions of liquids on graphite[J]. The Journal of Physical Chemistry C, 2019, doi:10.1021/acs.jpcc.9b00900。
[97] Huang X Y, Lin L, Zheng Q S. Superlubric nanogenerators with superb performances[J]. arXiv:1911.04764, 2019.
[98] Hod O, Meyer E, Zheng Q S, et al. Structural superlubricity and ultralow friction across the length scales[J]. Nature, 2018, 563:485-492.
[99] Song Y M, Qu C Y, Ma M, et al. Structural superlubricity based on crystalline materials[J]. Small, 2019, doi:10.1002/smll.201903018.
[100] Zhang S, Ma T B, Erdemir A, et al. Tribology of twodimensional materials:From mechanisms to modulating strategies[J]. Materials Today, 2019, 26:67-86.
[101] Lin X, Zhang H W, Guo Z R, et al. Strain engineering of friction between graphene layers[J]. Tribology International, 2019, 131:686-693.
[102] Wang K Q, Ouyang W G, Cao W, et al. Robust superlubricity by strain engineering[J]. Nanoscale, 2019, 11:2186-2193.
[103] Wang K, Qu C, Wang J, et al. Strain engineering modulates graphene interlayer friction by moiré pattern evolution[J]. ACS Applied Materials & Interfaces, 2019, 11:36169-36176.
[104] Zhang S, Hou Y, Li S Z, et al. Tuning friction to a superlubric state via in-plane straining[J]. Proceedings of the National Academy of Sciences, 2019, 116:24452-24456.
[105] Gongyang Y J, Qu C Y, Zhang S M, et al. Eliminating delamination of graphite sliding on diamond-like carbon[J]. Carbon, 2018, 132:444-450.
[106] Gongyang Y J, Ouyang W G, Qu C Y, et al. Temperature and velocity dependent friction of a microscale graphite-DLC heterostructure[J]. Friction, 2019, doi:10.1007/s40544-019-0288-0.
[107] Deng H, Ma M, Song Y M, et al. Structural superlubricity in graphite flakes assembled under ambient conditions[J]. Nanoscale, 2018, 10:14314-14320.
[108] Qi Y Z, Liu J, Dong Y L, et al. Impacts of environments on nanoscale wear behavior of graphene:Edge passivation vs. substrate pinning[J]. Carbon, 2018, 139:59-66.
[109] Liu J, Qi Y Z, Li Q Y, et al. Vacancy-controlled friction on 2D materials:Roughness, flexibility, and chemical reaction[J]. Carbon, 2019, 142:363-372.
[110] Liu X F, Li Y, Guo W L. Friction modulation via photoexcitation in two-dimensional material[J]. ACS Applied Materials & Interfaces, 2019, doi:10.1021/acsami.9b20285.
[111] Li Q Y, Nian G D, Tao W M, et al. Temperature-dependent interfacial debonding and frictional behavior of fiber-reinforced polymer composites[J]. Journal of Applied Mechanics, 2019, 86:091010.
[112] Fei W W, Shen C, Zhang S Y, et al. Waving potential at volt level by a pair of graphene sheets[J]. Nano Energy, 2019, 60:656-660.
[113] Feng S Z, Xu Z P. Edge facilitates water evaporation through nanoporous graphene[J]. Nanotechnology, 2019, 30:165401.
[114] Shen C, Guo W L. Manipulation of long-range water ordering in less confined nanotubes[J]. The Journal of Physical Chemistry C, 2019, 123:10101-10106.
[115] Shen C, Qiu H, Guo W L. Soliton-like propagation of dipole reorientation in confined single-file water chains[J]. Nanoscale, 2019, doi:10.1039/C9NR03631H.
[116] Geng H Y, Zhou K, Zhou J J, et al. Sunlight-driven water transport via a reconfigurable pump[J]. Angewandte Chemie, 2018, 130:15661-15666.
[117] Qiu H, Guo W L. Phase diagram of nanoscale water on solid surfaces with various wettabilities[J]. The Journal of Physical Chemistry Letters, 2019, 10:6316-6323.
[118] Xue M M, Guo W L. Water models for interfacial water simulations[J]. Science China Technological Sciences, 2019, 62:729-735.
[119] Qiao S S, Li Q Y, Feng X Q. Sliding friction and contact angle hysteresis of droplets on microhole-structured surfaces[J]. The European Physical Journal E, 2018, 41:25.
[120] Jiao S P, Zhou K, Wu M M, et al. Confined structures and selective mass transport of organic liquids in graphene nanochannels[J]. ACS Applied Materials & Interfaces, 2018, 10:37014-37022.
[121] Ying W, Cai J, Zhou K, et al. Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane[J]. ACS Nano, 2018, 12:5385-5393.
[122] Fei W W, Xue M M, Qiu H, et al. Heterogeneous graphene oxide membrane for rectified ion transport[J]. Nanoscale, 2019, 11:1313-1318.
[123] Ying W, Zhou K, Hou Q G, et al. Selectively Tune gas transport through ionic liquid filled graphene oxide nanoslits by electric field[J]. Journal of Materials Chemistry A, 2019, 7:15062-15067.
[124] Gopinadhan K, Hu S, Esfandiar A, et al. Complete steric exclusion of ions and proton transport through confined monolayer water[J]. Science, 2019, 363(6423):145-148.
[125] Yu Y Z, Fan J C, Xia J, et al. Dehydration impeding ionic conductance through two-dimensional angstromscale slits[J]. Nanoscale, 2019, 11:8449-8457.
[126] Yu Y Z, Fan J C, Esfandiar A, et al. Charge asymmetry effect in ion transport through angstrom-scale channels[J]. The Journal of Physical Chemistry C, 2019, 123:1462-1469.
[127] Qiu H, Xue M M, Shen C, et al. Graphynes for water desalination and gas separation[J]. Advanced Materials, 2019, 31:1803772.
[128] Yang J H, Yuan Q Z, Zhao Y P. Evolution of the interfacial shape in dissolutive wetting:coupling of wetting and dissolution[J]. International Journal of Heat and Mass Transfer, 2018, 118:201-207.
[129] Miao Q, Yuan Q Z, Zhao Y P. Dissolutive flow in nanochannels:Transition between plug-like and Poiseuillelike[J]. Microfluidics and Nanofluidics, 2018, 22:141.
[130] Yang J H, Yuan Q Z, Zhao Y P. Solute transport and interface evolution in dissolutive wetting[J]. Science China Physics, Mechanics & Astronomy, 2019, 62:124611.
[131] Chen S Y, Liu M Y, Huang H M, et al. Heat stress-induced multiple multipolar divisions of human cancer cells[J]. Cell, 2019, 8:888.
[132] Yu M R, Song W Y, Tian F L, et al. Temperature-and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels[J]. Proceedings of the National Academy of Sciences, 2019, 116:5362-5369.
[133] Ding Y, Wang G F, Feng X Q, et al. Micropipette aspiration method for characterizing biological materials with surface energy[J]. Journal of Biomechanics, 2018, 80:32-36.
[134] Xiang Y H, Zhong D M, Wang P, et al. A physically based visco-hyperelastic constitutive model for soft materials[J]. Journal of the Mechanics and Physics of Solids, 2019, 128:208-218.
[135] Zhong D M, Xiang Y H, Yin T H, et al. A physicallybased damage model for soft elastomeric materials with anisotropic Mullins effect[J]. International Journal of Solids and Structures, 2019, 176-177:121-134.
[136] Pourmodheji R, Qu S X, Yu H H. Energy-based strength theory for soft elastic membranes[J]. Journal of Applied Mechanics, 2019, 86:071008.
[137] Zhang M Q, Cao X N, Chen X P, et al. Model-based nonlinear control of the dielectric elastomer actuator with high robustness and precision[J]. Journal of Applied Mechanics, 2019, 86:121004.
[138] Fu Y M, Lu H T, Nian G D, et al. Size-dependent inertial cavitation of soft materials[J]. Journal of the Mechanics and Physics of Solids, 2019, 137:103859.
[139] Yin T H, Wang P, Yu H H, et al. Failure of soft dielectric membrane with a hole subjected to mechanical and electric loads[J]. International Journal of Non-Linear Mechanics, 2019, 117:103243.
[140] Rao P, Li T F, Wu Z L, et al. Ductile "Ice":Frozen hydrogels with high ductility and compressive yielding strength[J]. Extreme Mechanics Letters, 2019, 28:43-49.
[141] Zhou F H, Zhang M Q, Cao X N, et al. Fabrication and modeling of dielectric elastomer soft actuator with 3D printed thermoplastic frame[J]. Sensors and Actuators A:Physical, 2019, 292:112-120.
[142] Liu Y D, Liu B H, Yin T H, et al. Bistable rotating mechanism based on dielectric elastomer actuator[J]. Smart Materials and Structures, 2019, 29:015008.
[143] Chen Y F, Kang G Z, Yuan J H, et al. Experimental study on pure-shear-like cyclic deformation of VHB 4910 dielectric elastomer[J]. Journal of Polymer Research, 2019, 26:186.
[144] Cao X N, Zhang M Q, Zhang Z, et al. Review of soft linear actuator and the design of a dielectric elastomer linear actuator[J]. Acta Mechanica Solida Sinica, 2019, 32:566-579.
[145] Liu J J, Yang C H, Yin T H, et al. Polyacrylamide hydrogels. II. Elastic dissipater[J]. Journal of the Mechanics and Physics of Solids, 2019, 133:103737.
[146] Wang S, Chen G R, Niu S Y, et al. Magnetic assisted, transparent and flexible percolative composite for highly sensitive piezoresistive sensor via hot embossing technology[J]. ACS Applied Materials & Interfaces, 2019, 11:48331-48340.
[147] Chen L Y, Chen W J, Xue Y T, et al.An untethered soft chemo-mechanical robot with composite structure and optimized control[J]. Extreme Mechanics Letters, 2019, 27:27-33.
[148] Christianson C, Bayag C, Li G R, et al. Jellyfish-inspired soft robot driven by fluid electrode dielectric organic robotic actuators[J]. Frontiers in Robotics and AI, 2019, doi:10.3389/frobt.2019.00126.
[149] Li T F, Zou Z N, Mao G Y, et al. Agile and resilient insect-scale robot[J]. Soft Robotics, 2019, 6:133-141.
[150] Zhan X, Fang H B, Xu J, et al. Planar locomotion of earthworm-like metameric robots[J]. The International Journal of Robotics Research, 2019, 38:1751-1774.
[151] Li Y, Guo W L. Machine-learning model for predicting phase formations of high-entropy alloys[J]. Physical Review Materials, 2019, 3:095005.
[152] Zhou X C, Hang Y, Liu L R, et al A large family of synthetic two-dimensional metal hydrides[J]. Journal of the American Chemical Society, 2019, 141:7899-7905.
[153] Li X, Liu Z, Cui S, et al. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347:735-753.
[154] Wan J, Jiang J W, Park H S. Machine learning-based design of porous graphene with low thermal conductivity[J]. Carbon, 2020, 157:262-269.
[155] Li X, Ning S, Liu Z, et al. Designing phononic crystal with anticipated band gap through a deep learning based data-driven method[J]. Computer Methods in Applied Mechanics and Engineering, 2019, doi:10.1016/j. cma.2019.112737.
Outlines

/