[1] List of solar system probes[EB/OL].[2019-12-26]. https://en.wikipedia.org/wiki/List_of_Solar_System_probes.
[2] David D, Terri D. Space missions in 2020[J]. Australian Sky& Telescope, 2020, 1:36-37.
[3] 万卫星, 魏勇, 郭正堂, 等. 从深空探测大国迈向行星科学强国[J]. 中国科学院院刊, 2019, 34(7):748-755.
[4] 范全林, 王琴, 白青江. 2018年深空探测热点回眸[J]. 科技导报, 2019, 37(1):52-64.
[5] 华义, 邓敏, 梁赛玉. 嫦娥四号任务再获国际奖项[EB/OL]. (2019-12-05)[2019-12-10]. http://www.xinhuanet.com/2019-12/05/c_1125313376.htm.
[6] Spektr-RG commences sky scanning[EB/OL]. (2019-12-11)[2019-12-30]. http://en.roscosmos.ru/21145/.
[7] Anders F, Khalatyan A, Chiappini C, et al. Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G=18[J]. Astronomy & Astrophysics, 2019, 628:1-32.
[8] Barros S D, Oesch P A, Labbé I, et al. The GREATS H β+[O iii] luminosity function and galaxy properties at z~ 8:Walking the way of JWST[J]. Monthly Notices of the Royal Astronomical Society, 2019, 498(2):2355-2366.
[9] 嫦娥四号任务科学成果交流会在京举行[EB/OL]. (2019-11-25)[2019-12-10]. http://cheos.org.cn/n132/n230/n18-088/c6808288/content.html.
[10] Liu J J, Ren X, Yan W, et al. Descent trajectory reconstruction and landing site positioning of Chang' E-4 on the lunar farside[J]. Nature Communications, 2019, 10:4229-4238.
[11] Li C L, Liu D W, Liu B, et al. Chang'E-4 initial spectroscopic identification of lunar far-side mantle-derived materials[J]. Nature, 569:378-382.
[12] 习近平会见探月工程嫦娥四号任务参研参试人员代表[EB/OL]. (2019-02-20)[2019-12-10]. http://www.xinhuanet.com/politics/leaders/2019-02/20/c_1124142092.htm.
[13] 嫦娥四号任务团队获英国皇家航空学会金奖[EB/OL]. (2019-11-27)[2019-12-10]. http://www.xinhuanet.com//mrdx/2019-11/27/c_138586399.htm.
[14] NASA seeks $1.6B to jump start new moon shot program called ‘Artemis’[EB/OL]. (2019-05-13)[2019-12-10]. https://www.al.com/news/2019/05/nasa-seeks-16bto-jump-start-new-moon-shot-program-called-artemis. html.
[15] Moon's south pole in NASA's landing sites[EB/OL]. (2019-04-16)[2019-12-10]. https://www.nasa.gov/feature/nasa-selects-teams-to-study-untouched-moonsamples.
[16] NASA selects teams to study untouched Moon samples[EB/OL]. (2019-03-12)[2019-12-10]. https://www.nasa.gov/feature/nasa-selects-teams-to-study-untouchedmoon-samples.
[17] NASA selects experiments for possible lunar flights in 2019[EB/OL]. (2019-02-22)[2019-12-10]. https://www.nasa.gov/press-release/nasa-selects-experiments-forpossible-lunar-flights-in-2019/.
[18] ESA and NASA to team up on lunar science[EB/OL]. (2019-03-28)[2019-12-10]. https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/ESA_and_NASA_to_team_up_on_lunar_science.
[19] The JAXA space exploration innovation hub center coproduces results on remote and automatic Control to Build Lunar Base[EB/OL]. (2019-03-28)[2019-12-10]. https://global.jaxa.jp/press/2019/03/20190328a.html.
[20] Beresheet a private Israeli moon mission[EB/OL].[2019-12-10]. https://www.planetary.org/explore/space-topics/space-missions/beresheet.html.
[21] Chandrayaan-2 Latest Updates[EB/OL]. (2019-11-13)[2019-12-26]. https://www.isro.gov.in/chandrayaan2-latest-updates.
[22] Mehdi B, Hurley D M, Stubbs T J, et al. Lunar soil hydration constrained by exospheric water liberated by meteoroid impacts[J]. Nature Geoscience, 2019(12):333-338.
[23] Lior R, Jaahnavee V, David A P. Thick ice deposits in shallow simple craters on the Moon and Mercury[J]. Nature Geoscience, 2019(12):597-601.
[24] Nathan RW, James F B, Thomas R W, et al. Evidence for recent and ancient faulting at Mare Frigoris and implications for lunar tectonic evolution[J]. Icarus, 2019(325):151-161.
[25] Peter B J, David E S, Paul K B, et al. Deep structure of the lunar south pole-Aitken Basin[J]. Geophysical Research Letters, 2019, 46(10):5100-5106.
[26] Meghan B. Weird ‘anomaly’ at the Moon's south pole may be a metal asteroid's grave[EB/OL]. (2019-06-10)[2019-12-17]. https://www.space.com/moon-south-poleanomaly-metal-asteroid-impact.html.
[27] Ann C V, Oleg K, Frank D, et al. Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter[J]. Nature, 2019, 568:521-525.
[28] Oleg K, Ann C V, Franck M, et al. No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations[J]. Nature, 2019, 568:517-520.
[29] Первые результаты научных приборов «ЭкзоМарса-2016» опубликованы в[EB/OL]. (2019-04-10)[2019-12-13]. http://press.cosmos.ru/pervye-rezultaty-nauchnyh-priborov-ekzomarsa-2016-opublikovany-v-nature.
[30] Rapin W, Ehlmann B L, Dromart G, et al. An interval of high salinity in ancient Gale crater lake on Mars[J]. Nature Geoscience, 2019, 12:889-895.
[31] World first French SEIS instrument detects ‘marsquake’[EB/OL]. (2019-04-23)[2019-12-13]. https://presse.cnes.fr/en/world-first-french-seis-instrument-detectsmarsquake.
[32] NASA's inSight lander captures audio of first likely ‘quake’ on Mars[EB/OL]. (2019-04-24)[2019-12-13]. https://www.nasa.gov/press-release/nasa-s-insight-lander-captures-audio-of-first-likely-quake-on-mars.
[33] Hiroki K, Norihiko S, Masahiro T, et al. Planetary-scale streak structure reproduced in high-resolution simulations of the Venus atmosphere with a low-stability layer[J]. Nature Communications, 2019, 10:23-33.
[34] NASA's Juno finds changes in Jupiter's magnetic field[EB/OL]. (2019-05-20)[2019-12-13]. https://www.nasa.gov/feature/jpl/nasas-juno-finds-changes-in-jupitersmagnetic-field.
[35] Moore K M, Cao H, Bloxham J, et al. Time variation of Jupiter's internal magnetic field consistent with zonal wind advection[J]. Nature Astronomy, 2019, 3:730-735.
[36] Samantha K T, Michael E B, Kevin P H.Sodium chloride on the surface of Europa[J]. Science Advances, 2019, 5(6):1-5.
[37] Linda S. Cassini-Huygens' exploration of the Saturn system:13 years of discovery[J]. Science, 2019, 364(6445):1046-1051.
[38] Matthew S T, Philip D N, Jeffrey N C, et al. Closerange remote sensing of Saturn's rings during Cassini's ring-grazing orbits and Grand Finale[J]. Science, 2019, doi:10.1126/science.aau1017.
[39] Less L, Militzer B, Kaspi Y, et al. Measurement and implications of Saturn's gravity field and ring mass[J]. Science, doi:10.1126/science.aat2965.
[40] Buratti B J, Thomas P C, Roussos E, et al. Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus[J]. Science, 2019, doi:10.1126/science.aat2349.
[41] Khawaja N, Postberg F, Hillier J, et al. Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains[J]. Monthly Notices of the Royal Astronomical Society, 2019, 489(4):5231-5243.
[42] Stern S A, Weaver H A, Spencer J R, et al. Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object[J]. Science, 2019, doi:10.1126/science.aaw9771.
[43] 魏奉思, 万卫星, 曹晋滨, 等. 空间天气科学服务和平利用空间[M]. 北京:科学出版社, 2018.
[44] Howard, R A, Vourlidas A, Bothmer V, et al. Near-Sun observations of an F-corona decrease and K-corona fine structure[J]. Nature, 2019, 576:232-236.
[45] Kasper, J C, Bale S D, Belcher J W, et al. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind[J]. Nature, 2019, 576:228-231.
[46] Bale S D, Badman S T, Bonnell J W, et al. Highly structured slow solar wind emerging from an equatorial coronal hole[J]. Nature, 2019, 576:237-242.
[47] McComas D J, Christian E R, Cohen C M S, et al. Probing the energetic particle environment near the Sun[J]. Nature, 2019, 576:223-227.
[48] Parker E N. Exploring the innermost solar atmosphere[J]. Natutre Astronony, 2019, 3:997-1006.
[49] Lina T. 25 years of science in the solar wind[EB/OL]. (2019-11-02)[2019-12-13]. https://www.nasa.gov/feature/goddard/2019/25-years-of-science-in-the-solarwind.
[50] Gurnett D A, Kurth WS. Plasma densities near and beyond the heliopause from the Voyager 1 and 2 plasma wave instruments[J]. Natutre Astronony, 2019, 3:1024-1028.
[51] Stone E C, Cummings A C, Heikkila B C, et al. Cosmic ray measurements from Voyager 2 as it crossed into interstellar space[J]. Natutre Astronony, 2019, 3:1013-1018.
[52] Krimigis SM, Decker RB, Roelof EC, et al. Energetic charged particle measurements from Voyager 2 at the heliopause and beyond[J]. Natutre Astronony, 2019, 3:997-1006.
[53] Richardson J D, Belcher J W, Garcia-Galindo P, et al. Voyager 2 plasma observations of the heliopause and interstellar medium[J]. Natutre Astronony, 2019, 3:1019-1023.
[54] Burlaga L F, Ness N F, Berdichevsky D B, et al. Magnetic field and particle measurements made by Voyager 2 at and near the heliopause[J]. Natutre Astronony, 2019, 3:1007-1012.
[55] Lauretta D S, Hergenrother C W, Chesley S R, et al. Episodes of particle ejection from the surface of the active asteroid (101955) Bennu[J]. Science, 2019, doi:10.1126/science.aay3544.
[56] Sean P. X marks the spot:NASA selects site for asteroid sample Collection[EB/OL]. (2019-12-17)[2019-12-20]. https://www.nasa.gov/press-release/x-marks-the-spotnasa-selects-site-for-asteroid-sample-collection/.
[57] Lauretta D S, DellaGiustina D N, Bennett C A, et al. The unexpected surface of asteroid (101955) Bennu[J]. Nature, 2019, 568:55-60.
[58] DellaGiustina D N, Emery J P, Golish D R, et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[J]. Natutre Astronony, 2019, 3:341-351.
[59] Walsh K J, Jawin E R, Ballouz R, et al. Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface[J]. Nature Geoscience, 2019, 12:242-246.
[60] Watanabe S, Hirabayashi M, Hirata N, et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-A spinning top-shaped rubble pile[J]. Science, 2019, 364(6437):268-272.
[61] Kitazato K, Milliken R E, Iwata T, et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy[J]. Science, 2019, 364(6437):272-275.
[62] Sugita S, Honda R, Morota T, et al. The geomorphology, color, and thermal properties of Ryugu:Implications for parent-body processes[J]. Science, 2019, 364(6437); doi:10.1126/science.aaw0422.
[63] The "Goodbye Ryugu" campaign[EB/OL]. (2019-2-22)[2019-12-17]. http://www.hayabusa2.jaxa.jp/en/topics/20191113e_SAYONARA_Ryugu/.
[64] 王琴, 邹永廖, 范全林. 美国公布未来6年深空发射计划, 加快月球轨道空间站建设[J]. 空间科学学报, 2018, 38(6):844.
[65] 国际合作谱写深空探测未来[EB/OL]. (2019-04-22)[2019-12-21]. http://www.xinhuanet.com/tech/2019-04/22/c_1124396683.htm.
[66] 宋婷婷, 范全林, 王琴. 美国公布重返月球的阿尔忒弥斯计划科学目标[J]. 空间科学学报, 2019, 39(6):717.
[67] NASA's Dragonfly will fly around Titan looking for origins, signs of life[EB/OL]. (2019-06-28)[2019-12-30]. https://www.nasa.gov/press-release/nasas-dragonfly-willfly-around-titan-looking-for-origins-signs-of-life.
[68] ESA's new mission to intercept a comet[EB/OL]. (2019-06-19)[2019-12-30]. http://www.esa.int/Science_Exploration/Space_Science/ESA_s_new_mission_to_intercept_a_comet.
[69] VOYAGE 2050 long-term planning of the ESA science pragramme[EB/OL]. (2019-11-15)[2019-12-13]. https://www.cosmos.esa.int/web/voyage-2050.
[70] N°22-2019:ESA ministers commit to biggest everbudget[EB/OL]. (2019-11-28)[2019-12-30]. https://www.esa.int/Newsroom/Press_Releases/ESA_ministers_commit_to_biggest_ever_budget.
[71] Roscosmos:Russia's lunar program is designed until 2040[EB/OL]. (2019-09-15)[2019-12-30]. https://www.tellerreport.com/tech/2019-09-14--roscosmos--russia-s-lunar-program-is-designed-until-2040-.SJz4oV05US.html.
[72] Research and development directorate[EB/OL].[2019-12-27]. http://www.kenkai.jaxa.jp/eng/publication/pamphlet/pdf/RD2018_eng.pdf.
[73] Exploration imagination innovation[EB/OL].[2019-12-27]. https://www.asc-csa.gc.ca/pdf/eng/publications/space-strategy-for-canada.pdf.
[74] 时蓬, 范全林. 2020年全球重要空间科学发射任务展望[J]. 空间科学学报, 2020, 40(1):1-4.
[75] 耿言, 周继时, 李莎, 等. 我国首次火星探测任务[J]. 深空探测学报, 2018, 5(5):399-405.
[76] Mars 2020 mission[EB/OL].[2019-12-27]. https://mars.nasa.gov/mars2020/.
[77] The ExoMars rover instrument suite looking for signatures of life on Mars[EB/OL]. (2019-09-01)[2019-12-27]. https://exploration.esa.int/web/mars/-/45103-roverinstruments.
[78] Jeremy R. Hope Mars mission:Launching the Arab world into the space race[EB/OL]. (2019-10-21)[2019-12-27]. https://www.space.com/hope-emirates-mars-mission.html.