[1] 何建坤. 努力实现能源和经济低碳转型[J]. 可持续发展经济导刊, 2019(增刊2):26-27.
[2] 何建坤. 全球气候治理新形势及我国对策[J]. 环境经济研究, 2019, 4(3):1-9.
[3] 何建坤. 全球气候治理变革与我国气候治理制度建设[J]. 中国机构改革与管理, 2019(2):37-39.
[4] 毛宗强. 世界氢能炙手可热中国氢能蓄势待发[J].太阳能, 2016(7):16-19.
[5] 蒋利军, 陈霖新. 氢能技术现状及挑战[J]. 能源, 2019(3):24-27.
[6] 政府工作报告——2018年3月5日在第十三届全国人民代表大会第一次会议上[EB/OL].[2019-12-20]. http://www.xinhuanet.com/2018-03/22/c_1122575588.htm.
[7] 黎明. 生态环境部等11部门联合发布《柴油货车污染治理攻坚战行动计划》[J]. 商用汽车, 2019(1):6.
[8] 陈婉.《绿色产业指导目录(2019年版)》 印发, 厘清绿色产业边界, 告别泛绿化现象[J]. 环境经济, 2019(7):50-53.
[9] 2019年新能源汽车标准化工作要点[EB/OL].[2019-12-30]. http://www.miit.gov.cn/n1146285/n1146352/n3054355/n3057585/n3057589/c6957468/content.html.
[10] 中共中央国务院印发《交通强国建设纲要》[EB/OL].[2019-12-30]. http://www.gov.cn/zhengce/2019-09/19/content_5431432.html.
[11] 15部门印发《关于推动先进制造业和现代服务业深度融合发展的实施意见》[EB/OL].[2019-12-30]. http://www.gov.cn/xinwen/2019-11/15/content_5452459.html.
[12] 中国加氢站建设全景图[EB/OL].[2019-12-31]. http://www.sohu.com/a/333295953_465907.
[13] 超25省市出台政策布局加氢站, 2019年加氢站市场格局分析[EB/OL].[2019-12-31]. https://baijiahao.baidu.com/s?id=1645529215836670576&wfr=spider&for=pc.
[14] Ahman V V, Nilsson M, Nilsson L J. Assessment of hydrogen direct reduction for fossil-free steelmaking[J]. Journal of Cleaner Production, 2018, 203(1):736-745.
[15] 中核集团:"核能制氢" 力助"氢能炼钢", 炼钢零排放时代来临[EB/OL].[2019-12-13]. https://www.d1ev.com/kol/88090.
[16] Liu D, Li X, Chen S. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution.[J]. Nat Energy, 2019(4):512-518.
[17] Guan N Z, Hong Y L, Peng J, et al. Effect of TiO2 nanotube arrays morphology/structure on photocatalytic hydrogen production[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(2):852-857.
[18] Huang G, Liu X, Shi S, et al. Hydrogen producing water treatment through mesoporous TiO2 nanofibers with oriented nanocrystals[J]. Chinese Journal of Catalysis, 2020, 41(1):50-61.
[19] Wang H, Hu X, Ma Y, et al. Nitrate-group-grafting-induced assembly of rutile TiO2 nano bundles for enhanced photocatalytic hydrogen evolution[J]. Chinese Journal of Catalysis, 2020, 41(1):95-102.
[20] He F, Meng A, Cheng B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chinese Journal of Catalysis, 2020, 41(1):9-20.
[21] Lin Y Z, Yu L Y. Photocatalytic water splitting on Rh/K4Nb6O17 nanosheets[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(2):1224-1231.
[22] Zhang L, Hao X, Li J, et al. Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution[J]. Chinese Journal of Catalysis, 2020, 41(1):82-94.
[23] Ou W, Pan J, Liu Y, et al. Two-dimensional ultrathin MoS2-modified black Ti3+-TiO2 nanotubes for enhanced photocatalytic water splitting hydrogen production[J]. Journal of Energy Chemistry, 2020, 43:188-194.
[24] Wei Z, Xu M, Liu J, et al. Simultaneous visible-light-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2@ZnxCd1-xS:Solid-solution-assisted photocatalysis[J]. Chinese Journal of Catalysis, 2020, 41(1):103-113.
[25] Li F, Leung D Y. Highly enhanced performance of heterojunction Bi2S3/BiVO4 photoanode for photo electrocatalytic hydrogen production under solar light irradiation[J]. Chemical Engineering Science, 2020, 211(1):115266.
[26] Li Y, Zhang D, Feng X, et al. Enhanced photocatalytic hydrogen production activity of highly crystalline carbon nitride synthesized by hydrochloric acid treatment[J]. Chinese Journal of Catalysis, 2020, 41(1):21-30.
[27] Wang S, Zhao H, Zhao X, et al. Surface engineering of hollow carbon nitride microspheres for efficient photoredox catalysis[J]. Chemical Engineering Journal, 2020, 381(1):122593.
[28] Wang W, Fang J. Mesoporous SiO2-derived gC3N4@CdS core-shell heteronanostructure for efficient and stable photocatalytic H2 production[J]. Ceramics International, 2020, 46(2):2384-2391.
[29] Qi K, Lü W, Khan I, et al. Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating[J]. Chinese Journal of Catalysis, 2020, 41(1):114-121.
[30] Zhao W, Liu J, Ding Z, et al. Optimal synthesis of platinum-free 1D/2D CdS/MoS2(CM) heterojunctions with improved photocatalytic hydrogen production performance[J]. Journal of Alloys and Compounds, 2020, 813(1):152234.
[31] 杜洪方, 王珂, 何松, 等. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J/OL]. 材料导报, 2020(1):1-13.
[32] Wen X C, Yi W Z, Guang L C, et al. Hierarchical porous bimetal-sulfide bi-functional nanocatalysts for hydrogen production by overall water electrolysis[J]. Journal of Colloid and Interface Science, 2020, 560(15):426-435.
[33] 胡强. 基于密度泛函理论的钛膜吸氢/释氢机理研究及钛储氢层寿命预测[C]//第十四届国际真空科学与工程应用学术会议. 沈阳:中国真空学会, 2019:236-237.
[34] Wang Y, Luo K, Ye W, et al. Mg@C60 nano-lamellae and its 12.50 wt% hydrogen storage capacity[J]. International Journal of Hydrogen Energy, 2019, 44(29):15239-15245.
[35] Wu Y, Qi Y, Zheng J, et al. Synthesis and dehydrogenation properties of NaZn(BH4)3·en and NaZn(BH4)3·2en (en=ethylene diamine)[J]. Journal of Energy Chemistry, 2020, 42:233-236.
[36] 吴岱丰. 金属硼氢化物氨合物的制备与性能调控[D]. 广州:华南理工大学, 2019.
[37] 戴豪. 水合肼分解制氢高效催化剂Ni-Pt/CeO2的制备及性能研究[D]. 广州:华南理工大学, 2019.
[38] Deng R Y, Zhang X X, Sun R L, et al. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells[J]. Journal of Energy Chemistry, 2020, 43(1):33-39.
[39] 冯艳,杨琨, 姚力, 等. 质子交换膜燃料电池基于非铂催化剂的膜电极制备与性能研究[J]. 上海汽车, 2019(6):4-8.
[40] 金守一, 盛夏, 潘兴龙, 等. 车用质子交换膜燃料电池膜电极组件综述[J]. 汽车文摘, 2019(12):5-12.
[41] 刘崇林, 崔衡, 李源源, 等. 双流板坯中间包结构优化的数理模拟研究[J]. 冶金设备, 2019(4):12-16.
[42] 刘崇林, 崔衡, 李源源, 等. 双流板坯中间包流场优化的物理模拟研究[J]. 冶金设备, 2019(3):9-15.
[43] 熊筱伟. 韩国现代新能源车落子四川!副社长李仁哲:将在川生产氢燃料电池汽车[EB/OL].[2019-12-31]. https://sichuan.scol.com.cn/ggxw/201904/56855309.html.
[44] 李山.中德签署联合意向声明继续推进电动汽车领域合作[N]. 科技日报, 2019-10-17.