Droplet manipulation is of great significance for multidisciplinary researches including life science, materials science, analytical chemistry and engineering thermal management. In 2019, the research on droplet manipulation achieved significant progress in solid-liquid collision, precise manipulation, etc. This paper reviews the research hotspots and representative achievements in the field of droplet behavior control in 2019, including precise regulation of solid-liquid collision, programmable droplet transport and development of a new digital micro-flow control technology.
LI Huizeng
,
SONG Yanlin
. Achievements of droplet manipulation in 2019: A review[J]. Science & Technology Review, 2020
, 38(3)
: 184
-191
.
DOI: 10.3981/j.issn.1000-7857.2020.03.016
[1] Li H Z, Fang W, Li Y N, et al. Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces[J]. Nature Communications, 2019, 10(1):950.
[2] Zhao Z P, Li H Z, Hu X T, et al. Steerable droplet bouncing for precise materials transportation[J]. Advanced Materials Interfaces, 2019, 6(21):1901033.
[3] Bird J C, Dhiman R, Kwon H M, et al. Reducing the contact time of a bouncing drop[J]. Nature, 2013, 503(7476):385-388.
[4] Liu Y H, Moevius L, Xu X P, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nature Physics, 2014, 10(7):515-519.
[5] Girard H L, Soto D, Varanasi K K. Waterbowls:Reducing impacting droplet interactions by momentum redirection[J]. ACS Nano, 2019, 13(7):7729-7735.
[6] Sun Q Q, Wang D H, Li Y N, et al. Surface charge printing for programmed droplet transport[J]. Nature Materials, 2019, 18(9):936-941.
[7] Bradley A, Box F, Hewitt I, et al. Wettability-independent droplet transport by Bendotaxis[J]. Physical Review Letters, 2019, 122(7):074503.
[8] Bintein P B, Bense H, Clanet C, et al. Self-propelling droplets on fibres subject to a crosswind[J]. Nature Physics, 2019, 15(10):1027-1032.
[9] Linke H, Alemán B J, Melling L D, et al. Self-propelled Leidenfrost droplets[J]. Physical Review Letters, 2006, 96(15):154502.
[10] Li J, Zhou X F, Zhang Y J, et al. Rectification of mobile Leidenfrost droplets by planar ratchets[J]. Small, 2019. doi:10.1002/smll.201901751.
[11] Gauthier A, Diddens C, Proville R, et al. Self-propulsion of inverse Leidenfrost drops on a cryogenic bath[J]. Proceedings of the National Academy of Sciences, 2019, 116(4):1174-1179.
[12] Jiang J K, Gao J, Zhang H D, et al. Directional pumping of water and oil microdroplets on slippery surface[J]. Proceedings of the National Academy of Sciences, 2019, 116(7):2482-2487.
[13] Zhang X X, Sun L Y, Wang Y, et al. Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping[J]. Proceedings of the National Academy of Sciences, 2019, 116(42):20863-20868.
[14] Li J, Ha N S, Liu T Y, et al. Ionic-surfactant-mediated electro-dewetting for digital microfluidics[J]. Nature, 2019, 572(7770):507-510.