Scientifc Comments

Hot topics of space-time adaptive processing in 2019: A review

  • YAN Sheng ,
  • SUN Mengru ,
  • SHI Bo ,
  • HAO Chengpeng
Expand
  • 1. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese of Academy of Sciences, Beijing 100049, China

Received date: 2019-12-31

  Revised date: 2020-01-10

  Online published: 2020-04-01

Abstract

Space-time adaptive processing (STAP) which performs adaptive filtering in spatial and temporal domains is a key technology for clutter suppression and target detection in moving platform radar system. In recent years, STAP technology has developed rapidly and its application field is also expanding. This article reviews the hot topics and important research progress in the field of STAP in 2019 and discusses new STAP trends.

Cite this article

YAN Sheng , SUN Mengru , SHI Bo , HAO Chengpeng . Hot topics of space-time adaptive processing in 2019: A review[J]. Science & Technology Review, 2020 , 38(3) : 192 -199 . DOI: 10.3981/j.issn.1000-7857.2020.03.017

References

[1] 郝程鹏, 施博, 闫晟, 等. 主动声纳混响抑制与目标检测技术[J]. 科技导报, 2017(20):104-110.
[2] Lin J, Jiang C S, LI J X, et al. STAP based on clean technology and conjugate gradient method[C]//2019 IEEE Radar Conference. Piscataway N J:IEEE, 2019:10.1109/RADAR.2019.8835806.
[3] Kulpa K. The CLEAN type algorithms for radar signal processing[C]//Microwaves, Radar & Remote Sensing Symposium. Piscataway N J:IEEE, 2008:152-157.
[4] Wang S, Shi B, Hao C P, et al. Exploiting persymmetry for JDL-STAP[J]. The Journal of Engineering, 2019, 2019(19):6113-6116.
[5] Wang X Y, Yang Z C, Huang J J. Reduced-dimension space-time adaptive processing for airborne radar with co-prime array[J]. The Journal of Engineering, 2019, 2019(19):5971-5974.
[6] Li J J, Li Y. Design and implementation of ΣΔ-3DT based on multi-core DSP[C]. 28th Wireless and Optical Communications Conference. Piscataway N J:IEEE, 2019.
[7] Vu P, Haimovich A M, Himed B. Effects of system impairments on the performance of distributed STAP[C]//2019 IEEE Radar Conference. Piscataway N J:IEEE, 2019, doi:10.1109/RADAR.2019.8835820.
[8] 刘佳俊, 位寅生, 朱永鹏, 等. 稳健的基于参数化协方差矩阵估计的空时自适应处理方法[J]. 电子学报, 2019, 47(9):1943-1950.
[9] Zhu S Q, Liao G S, Xu J W, et al. Robust STAP based on magnitude and phase constrained iterative optimization[J]. IEEE Sensors Journal, 2019, 19(19):8650-8656.
[10] Duan K Q, Xu H, Yuan H D, et al. Three-dimensional sparse recovery space-time adaptive processing for airborne radar[J]. The Journal of Engineering, 2019, 2019(19):5478-5482.
[11] Yang Z C, de Lamare R C, Li X. L1-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar[J]. IEEE Transactions on Signal Processing, 2012, 60(2):674-686.
[12] Sen S. OFDM radar space-time adaptive processing by exploiting spatiotemporal sparsity[J]. IEEE Transactions on Signal Processing, 2013, 61(1):118-130.
[13] Wang Z T, Wang Y L, Gao F, et al. Clutter nulling space-time adaptive processing algorithm based on sparse representation for airborne radar[J]. IET Radar, Sonar & Navigation, 2017, 11(1):177-184.
[14] Sun Y, Breloy A, Bahu P, et al. Low complexity algorithms for low rank clutter parameters estimation in radar systems[J] IEEE Transactions on Signal Processing, 2016, 64(8):1986-1998.
[15] Yang X P, Sun Y Z, Zeng T, et al. Fast STAP method based on PAST with sparse constraint for airborne phased array radar[J]. IEEE Transactions on Signal Processing, 2016, 64(17):4550-4561.
[16] Guo Y D, Liao G S, Feng W K. Sparse representation based algorithm for airborne radar in beam-space postDoppler reduced-dimension space-time adaptive processing[J]. IEEE Access, 2017, 5:5896-5903.
[17] Sadeghi M, Babaie-Zadeh M. Iterative sparsificationprojection:Fast and robust sparse signal approximation[J]. IEEE Transactions on Signal Processing, 2016, 64(21):5536-5548.
[18] Sen S. Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8):1510-1523.
[19] Zhang W, He Z S, Li H Y. Space time adaptive processing based on sparse recovery and clutter reconstructing[J]. IET Radar, Sonar & Navigation, 2019, 13(5):789-794.
[20] Zhang W, An R X, He N Y, et al. Reduced dimension STAP based on sparse recovery in heterogeneous clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, doi:10.1109/TAES.2019.292-1141.
[21] Zhang W, Han M H, He Z S, et al. Data-dependent reduced-dimension STAP[J]. IET Radar, Sonar & Navigation, 2019, 13(8):1287-1294.
[22] Li M, Sun G H, He Z S. Direct data domain STAP based on atomic norm minimization[C]//2019 IEEE Radar Conference. Piscataway N J:IEEE, 2019, doi:10.1109/RADAR.2019.8835701.
[23] da Silva A B C, Baumgartner S V, Krieger G. Training data selection and update strategies for airborne postDoppler STAP[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8):5626-5641.
[24] Li Y W, Xie W C, Mao H H, et al. Clutter suppression approach for end-fire array airborne radar based on adaptive segmentation[J]. IEEE Access, 2019, 7:147094-147105.
[25] Yang X P, Sun Y Z, Yang J, et al. Discrete interference suppression method based on robust sparse Bayesian learning for STAP[J]. IEEE Access, 2019, 7:26740-26751.
[26] Yuan H D, Xu H, Duan K Q, et al. Cross-spectral metric smoothing-based GIP for space-time adaptive processing[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9):1388-1392.
[27] Raghavan R S. False alarm analysis of the AMF algorithm for mismatched training[J]. IEEE Transactions on Signal Processing, 2019, 67(1):83-96.
[28] Ye W J, Yang X P, Sun Y Z, et al. Anti-jamming method for STAP based on a bi-phase random-coded signal[J]. The Journal of Engineering, 2019, 2019(19):6309-6312.
[29] Wojaczek P, Colone F, Cristallini D, et al. Reciprocalfilter-based STAP for passive radar on moving platforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2):967-988.
[30] Kulpa K, Bączyk M, Malanowski M, et al. CLEAN removal of ground clutter in mobile passive radar[C]//2019 IEEE Radar Conference. Piscataway N J:IEEE, 2019, doi:10.1109/RADAR.2019.8835846.
[31] Gessel B H, Lievsay J R. Three-dimensional emitter selection optimization for passive GMTI[C]//2019 IEEE Radar Conference. Piscataway N J:IEEE, 2019, doi:10.11-09/RADAR.2019.8835715.
[32] Zhou Y, Li Y Y, Wang L. The space-time adaptive processing method in airborne MIMO radar with nested structure[C]//2019 IEEE 4th International Conference on Signal and Image Processing. Piscataway N J:IEEE, 2019, doi:10.1109/SIPROCESS.2019.8868414.
[33] Lü Z D, He F, Sun Z Y. MIMO radar transceiver joint optimization using pre-information of forward-squintlooking GMTI[C].2019 IEEE 4th International Conference on Signal and Image Processing. Piscataway N J:IEEE, 2019.
[34] 王洪雁, 乔恵娇, 裴炳南. MIMO雷达空时编码和接收权联合稳健设计[J]. 西安电子科技大学学报, 2019, 46(2):69-77.
[35] Yang X, Huo K, Zhang X, et al. A Clutter-analysisbased STAP for moving FOD detection on runways[J]. Sensors, 2019, 19(3), doi:10.3390/s19030549.
[36] 崔畅, 胡程, 董锡超. 基于GEO SAR编队飞行的动目标检测[J]. 太赫兹科学与电子信息学报, 2019, 17(4):604-609.
[37] 李浩冬, 廖桂生, 许京伟. 弹载雷达和差通道稳健自适应杂波抑制方法[J]. 系统工程与电子技术, 2019, 41(2):273-279.
[38] Li Z H, Zhang Y S, Ge Q C, et al. Off-grid STAP algorithm based on reduced-dimension local search orthogonal matching pursuit[C]. IEEE 4th International Conference on Signal and Image Processing. Piscataway N J:IEEE, 2019.
[39] Lu L, Zhou C W, Shi Z G, et al. Off-grid angle-Doppler estimation for space-time adaptive processing:A sequential approach[C]//2019 IEEE/CIC International Conference on Communications in China (ICCC). Piscataway N J:IEEE, 2019, doi:10.1109/ICCChina.2019.8855917.
[40] Brandfass M, Meyer-Hilberg J, Dallinger A, et al. Towards cognitive radar via knowledge aided processing for airborne and ground based radar applications[C]//201920th International Radar Symposium (IRS). 2019, doi:10.23919/IRS.2019.8768133.
[41] Duan C D, Li Y, Wang W W. An intelligent sample selection method for space-time adaptive processing in heterogeneous environment[J]. 2019, IEEE Access, 7:30321-30330.
Outlines

/