Scientifc Comments

Review of sports medicine in 2019

  • WANG Jianing ,
  • GONG Xi
Expand
  • Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China

Received date: 2019-12-28

  Revised date: 2020-01-08

  Online published: 2020-04-01

Abstract

Sports medicine, as an interdisciplinary subject, achieved major progress in diagnosis and treatment, post-operative rehabilitation, application of new materials and methods, and new acknowledgement of diseases in 2019. This article reviews return to sports after ACLR, evidence based treatment of PFP, PRP application in muscle and tendon lesions, MSC application in treating osteoarthritis, and new concepts about sarcopenia as hot spots for the aforementioned fields. More achievements are also expected in the year of 2020 based on present works.

Cite this article

WANG Jianing , GONG Xi . Review of sports medicine in 2019[J]. Science & Technology Review, 2020 , 38(3) : 208 -216 . DOI: 10.3981/j.issn.1000-7857.2020.03.019

References

[1] Flagg K Y, Karavatas S G, Thompson S Jr, et al. Current criteria for return to play after anterior cruciate ligament reconstruction:An evidence-based literature review[J]. Annals of Translational Medicine, 2019(7):S252.
[2] Glogovac G, Schumaier A P, Grawe B M. Return to sport following revision anterior cruciate ligament reconstruction in athletes:A systematic review[J]. Arthroscopy 2019, 35(7):2222-2230.
[3] Kostyun R O, Burland J P, Kostyun K J, et al. Male and female adolescent athletes' readiness to return to sport after anterior cruciate ligament injury and reconstruction[J]. Clinical Journal of Sport Medicine, 2019, doi:10.1097/jsm.0000000000000751.
[4] Nwachukwu B U, Adjei J, Rauck R C, et al. How much do psychological factors affect lack of return to play after anterior cruciate ligament reconstruction? A systematic review[J]. Orthopaedic Journal of Sports Medicine, 2019, 7(5):2325967119845313.
[5] Della Villa F, Andriolo L, Ricci M, et al. Compliance in post-operative rehabilitation is a key factor for return to sport after revision anterior cruciate ligament reconstruction[J]. Knee Surgery, Sports Traumatology, Arthroscopy, 2019, doi:https://doi.org/10.1007/s00167-019-05649-2.
[6] Kosy J D, Phillips J R P, Edordu A, et al. Failure to return to preinjury activity level after hamstring anterior cruciate ligament reconstruction:Factors involved and considerations in goal setting[J]. Indian Journal of Orthopaedics 2019, 53(6):714-720.
[7] Patel N K, Sabharwal S, Hadley C, et al. Factors affecting return to sport following hamstrings anterior cruciate ligament reconstruction in non-elite athletes[J]. European Journal of Orthopaedic Surgery & Traumatology, 2019(29):1771-1779.
[8] Bodkin S G, Rutherford M H, Diduch D R, et al. How much time is needed between serial "return to play" assessments to achieve clinically important strength gains in patients recovering from anterior cruciate ligament reconstruction[J]. The American Journal of Sports Medicine, 2020, 48(1):70-77.
[9] Hamrin Senorski E, Svantesson E, Beischer S, et al. Low 1-Year return-to-sport rate after anterior cruciate ligament reconstruction regardless of patient and surgical factors:A prospective cohort study of 272 patients[J]. The American Journal of Sports Medicine, 2018, 46(7):1551-1558.
[10] Davies W T, Myer G D, Read P J. Is it time we better understood the tests we are using for return to sport decision making following ACL reconstruction? a critical review of the hop tests[J]. Sports Medicine, 2020, 50:485-495.
[11] Hart H F, Culvenor A G, Guermazi A, et al. The InjuryPsychological Readiness to return to sport (I-PRRS) scale and the Sport Confidence Inventory (SCI):A crosscultural validation[J]. Physical Therapy in Sport, 2019(40):218-224.
[12] Dunlop G, Ardern C L, Andersen T E, et al. Return-to-play practices following hamstring injury:A worldwide survey of 131 premier league football teams[J]. Sports Medicine, 2019, doi:10.1007/s40279-019-01199-2.
[13] Webster K E, Nagelli C V, Hewett T E, et al. Factors associated with psychological readiness to return to sport after anterior cruciate ligament reconstruction surgery[J]. The American Journal of Sports Medicine, 2018, 46(7):1545-1550.
[14] O'Connor R F, King E, Richter C, et al. No relationship between strength and power scores and anterior cruciate ligament return to sport after injury scale 9 months after anterior cruciate ligament reconstruction[J]. The American Journal of Sports Medicine, 2020, 48(1):78-84.
[15] Nagelli C V, Hewett T E. Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations[J]. Sports Medicine, 2017, 47(2):221-232.
[16] Willy R W, Hoglund L T, Barton C J, et al. Patellofemoral Pain[J]. Journal of Orthopaedic & Sports Physical Therapy, 2019, 49(9):CPG1-CPG95.
[17] Willy R W, Hoglund L T, Barton C J, et al. Patellofemoral pain:Using the evidence to guide physical therapist practice[J]. Journal of Orthopaedic & Sports Physical Therapy, 2019, 49(9):631-632.
[18] Edwards S G, Calandruccio J H. Autologous blood injections for refractory lateral epicondylitis[J]. Journal of Hand Surgery, 2003, 28(2):272-278.
[19] Mishra A, Pavelko T. Treatment of chronic elbow tendinosis with buffered platelet-rich plasma[J]. American Journal of Sports Medicine, 2006, 34(11):1774-1778.
[20] Mishra A K, Skrepnik N V, Edwards S G, et al. Efficacy of platelet-rich plasma for chronic tennis elbow:A double-blind, prospective, multicenter, randomized controlled trial of 230 patients[J]. The American Journal of Sports Medicine, 2014, 42(2):463-471.
[21] Creaney L, Wallace A, Curtis M, et al. Growth factorbased therapies provide additional benefit beyond physical therapy in resistant elbow tendinopathy:A prospective, single-blind, randomised trial of autologous blood injections versus platelet-rich plasma injections[J]. British Journal of Sports Medicine, 2011, 45(12):966-971.
[22] Thanasas C, Papadimitriou G, Charalambidis C, et al. Platelet-rich plasma versus autologous whole blood for the treatment of chronic lateral elbow epicondylitis:A randomized controlled clinical trial[J]. The American Journal of Sports Medicine, 2011, 39(10):2130-2134.
[23] Pinar H, Koch M A, Hawkins H, et al. Treatment of achilles tendinopathy with platelet-rich plasma[J]. International Journal of Sports Medicine, 2010, 31(8):577-583.
[24] Owens R F, Jr Ginnetti J, Conti S F, et al. Clinical and magnetic resonance imaging outcomes following platelet rich plasma injection for chronic midsubstance Achilles tendinopathy[J]. Foot & Ankle International, 2011, 32(11):1032-1039.
[25] Volpi P, Quaglia A, Schoenhuber H, et al. Growth factors in the management of sport-inducedtendinopathies:Results after 24 months from treatment. A pilot study[J]. The Journal of Sports Medicine and Physical Fitness, 2010, 50(4):494-500.
[26] Mautner K, Colberg R E, Malanga G, et al. Outcomes after ultrasound-guided platelet-rich plasma injections for chronic tendinopathy:A multicenter, retrospective review[J]. PM&R, 2013, 5(3):169-175.
[27] Creaney L. Platelet-rich plasma for treatment of Achilles tendinopathy[J]. The Journal of the American Medical Association, 2010, 303(17):1696.
[28] Deans V M, Miller A, Ramos J. A prospective series of patients with chronic achilles tendinopathy treated with autologous-conditioned plasma injections combined with exercise and therapeutic ultrasonography[J]. The Journal of Foot and Ankle Surgery, 2012, 51(6):706-710.
[29] Oloff L, Elmi E, Nelson J, et al. Retrospective analysis of the effectiveness of platelet-rich plasma in the treatment of Achilles tendinopathy:Pretreatment and posttreatment correlation of magnetic resonance imaging and clinical assessment[J]. Foot & Ankle Specialist, 2015, 8(6):490-497.
[30] Murawski C D, Smyth N A, Newman H, et al. A single platelet-rich plasma injection for chronic midsubstance achilles tendinopathy:A retrospective preliminary analysis[J]. Foot & Ankle Specialist, 2014, 7(5):372-376.
[31] Ferrero G, Fabbro E, Orlandi D, et al. Ultrasound-guided injection of platelet-rich plasma in chronic Achilles and patellar tendinopathy[J]. Journal of Ultrasound, 2012, 15(4):260-266.
[32] de Vos R J, Weir A, van Schie H T, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy:A randomized controlled trial[J]. The Journal of the American Medical Association, 2010, 303(2):144-149.
[33] Charousset C, Zaoui A, Bellaiche L, et al. Are multiple platelet-rich plasma injections useful for treatment of chronic patellar tendinopathy in athletes? A prospective study[J]. The American Journal of Sports Medicine, 2014, 42(4):906-911.
[34] Kaux J F, Bruyere O, Croisier J L, et al. One-year follow-up of platelet-rich plasma infiltration to treat chronic proximal patellar tendinopathies[J]. Acta Orthopaedica Belgica, 2015(81):251-256.
[35] Bubnov R, Yevseenko V, Semeniv I. Ultrasound guided injections of platelets rich plasma for muscle injury in professional athletes. Comparative study[J]. Medical Ultrasonography, 2013, 15(2):101-105.
[36] Liu B, Cheng H, Ma W, et al. Common variants in the GNL3 contribute to the increasing risk of knee osteoarthritis in Han Chinese population[J]. Scientific Reports, 2018, 8(1):9610.
[37] Evans C H. Advances in regenerative orthopedics[J]. Mayo Clinic Proceedings, 2013, 88(11):1323-1339.
[38] de Bari C, Roelofs A J. Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis[J]. Current Opinion in Pharmacology, 2018, 40:74-80.
[39] Kong L, Zheng L Z, Qin L, et al. Role of mesenchymal stem cells in osteoarthritis treatment[J]. Journal of Orthopaedic Translation, 2017(9):89-103.
[40] Im G I. Tissue engineering in osteoarthritis:Current status and prospect of mesenchymal stem cell therapy[J]. BioDrugs 2018(4), 32:183-192.
[41] Volarevic V, Arsenijevic N, Lukic M L, et al. Concise review:Mesenchymal stem cell treatment of the complications of diabetes mellitus[J]. Stem Cells, 2011, 29(1):5-10.
[42] Emadedin M, Labibzadeh N, Liastani M G, et al. Intraarticular implantation of autologous bone marrow-derived mesenchymal stromal cells to treat knee osteoarthritis:A randomized, triple-blind, placebo-controlled phase 1/2 clinical trial[J]. Cytotherapy, 2018, 20(10):1238-1246.
[43] Davatchi F, Sadeghi Abdollahi B, Mohyeddin M, et al. Mesenchymal stem cell therapy for knee osteoarthritis:5 years follow-up of three patients[J]. International Journal of Rheumatic Diseases, 2016, 19(3):219-225.
[44] Orozco L, Munar A, Soler R, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells:A pilot study[J]. Transplantation, 2013, 95(12):1535-1541.
[45] Elaheh M, Hamid R M, Maryam M T, et al. Mesenchymal stem cell-derived exosomes:A new therapeutic approach to osteoarthritis[J]. Stem Cell Research & Therapy 2019(10):340.
[46] Marzetti E, Calvani R, Tosato M, et al. Sarcopenia:An overview[J]. Aging Clinical and Experimental Research, 2017(29):11-17.
[47] Yu R, Wong M, Leung J, et al. Incidence, reversibility, risk factors and the protective effect of high body mass index against sarcopenia in community-dwelling older Chinese adults[J]. Geriatrics & Gerontology International, 2014, 14(suppl 1):15-28.
[48] Anker S D, Morley J E, von Haehling S. Welcome to the ICD-10 code for sarcopenia[J]. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7(5):512-514.
[49] Cruz-Jentoft A J, Bahat G, Bauer J, et al. Sarcopenia:Revised European consensus on definition and diagnosis[J]. Age and Ageing, 2019, 48(4):16-31.
Outlines

/