Exclusive: New materials of superalloy and advanced materials preparation technology

Creep deformation mechanism of nickel-based single crystal superalloy

  • ZHANG Siqian ,
  • WANG Dong
Expand
  • 1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
    2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Received date: 2019-12-19

  Revised date: 2020-01-02

  Online published: 2020-04-01

Abstract

The creep damage caused by the centrifugal stress is one of the main failure mechanisms of the blade, so it is very important to study the creep deformation behavior of the nickel-based single crystal superalloy. Based on the typical service conditions of the single crystal blade, this paper reviews the creep deformation mechanisms under the conditions of the high temperature-low stress and the medium temperature-high stress. It is suggested to study the creep behavior of the single crystal superalloys with typical defects and the effect of the oxidation and the hot corrosion on the creep-fatigue deformation damage mechanism.

Cite this article

ZHANG Siqian , WANG Dong . Creep deformation mechanism of nickel-based single crystal superalloy[J]. Science & Technology Review, 2020 , 38(2) : 6 -10 . DOI: 10.3981/j.issn.1000-7857.2020.02.001

References

[1] Reed R C. The superalloys fundamentals and applications[M]. Cambridge:Cambridge University Press, 2006. 170-187.
[2] Reed R C, Matan N, Cox D C, et al. Creep of CMSX-4 superalloy single crystals:Effects of rafting at high temperature[J]. Acta Materialia, 1999, 47(7):3367-3381.
[3] Matan N, Cox D C, Rae C M F, et al. On the kinetics of rafting in CMSX-4 superalloy single crystals[J]. Acta Materialia, 1999, 47(7):2031-2045.
[4] Matan N, Cox D C, Carter P, et al. Creep of CMSX-4 superalloy single crystals:Effects of misorientation and temperature[J]. Acta Materialia, 1999, 47(7):1549-1563.
[5] Chen Q Z, Knowles D M. Mechanism of <112>/3 slip initiation and anisotropy of γ' phase in CMSX-4 during creep at 750oC and 750 MPa[J]. Materials Science and Engineering A, 2003, 356(2):352-367.
[6] Rae C M F, Reed R C. Primary creep in single crystal superalloys:Origins, mechanisms and effects[J]. Acta Materialia, 2007, 55(3):1067-1081.
[7] Rae C M F, Matan N, Cox D C, et al. On the primary creep of CMSX-4 superalloy single crystals[J]. Metallurgical and Materials Transactions A, 2000, 31(9):2219-2228.
[8] Zhang J X, Wang J C, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep[J]. Acta Materialia, 2005, 53(17):4623-4633.
[9] Buffiere J Y, Ignat M. A dislocation based criterion for the raft formation in nickel-based superalloys single crystals[J]. Acta Metallurgica Materialia, 1995, 43(5):1791-1797.
[10] Field R D, Pollock T M, Murphy W H. The development of γ/γ' interfacial dislocation networks during creep in Ni-base superalloys[C]//Superalloys 1992, Warrendale, PA:The Minerals, Materials and Metals Society, 1992, 557-566.
[11] Tien J K, Copley S M. The effect of uniaxial stress on the periodic morphology of coherent gamma prime precipitates in nickel-base superalloy crystals[J]. Metallurgical Transactions A, 1971, doi:10.1007/BF02662660.
[12] Tien J K, Gamble R P. Effects of stress coarsening on coherent particle strengthening[J]. Metallurgical Transactions A, 1972, doi:10.1007/bf02643227.
[13] MacKay R A, Ebert L J. The development of directional coarsening of the γ' precipitate in superalloy single crystals[J]. Scripta Metallurgica, 1983, doi:10.1016/0036-9748(83)90287-9.
[14] Qi D Q, Wang D, Du K, et al. Creep deformation of a nickel-based single crystal superalloy under high stress at 1033 K[J]. Journal of Alloys and Compounds, 2018, 735(6):813-820.
[15] Fredholm A, Strudel J L. On the creep resistance of some nickel base single crystals[C]//Superalloys 1984 Warrendale, PA:The Minerals, Materials and Metals Society, 1984, 211-220.
[16] Paris O, Fahrmann M, Fahrmann E, et al. Early stages of precipitate rafting in a single crystal Ni-Al-Mo model alloy investigated by small-angle X-ray scattering and TEM[J]. Acta Materialia, 1997, 45(3):1085-1093.
[17] Rae C M F, Reed R C. Primary creep in single crystal superalloys:Origins, mechanisms and effects[J]. Acta Materialia, 2007, 55(3):1067-1081.
[18] Pollock T M, Argon A S. Creep resistance of CMSX-3 nickel base superalloy single crystals[J]. Acta Metallurgica Materialia, 1992, 40(1):1-30.
[19] Sass V, Glatzel U, Feller-Kniepmeier M. Anisotropic creep properties of the nickel-base superalloy CMSX-4[J]. Acta Materialia. 1996, 44(5):1967-1977.
[20] Feller-Kniepmeier M, Link T, Poschmann I. Temperature dependence of deformation mechanisms in a single crystal nickel-base alloy with high volume fraction of γ' phase[J]. Acta Materialia, 1996, 44(6):2397-2407.
[21] Sass V, Feller-Kniepmeier M. Orientation dependence of dislocation structures and deformation mechanisms in creep deformed CMSX-4 single crystals[J]. Materials Science and Engineering A, 1998, 245(1):19-28.
[22] Matan N, Cox D C, Carter P, et al. Creep of CMSX-4 superalloy single crystals:Effects of misorientation and temperature[J]. Acta Materialia, 1999, 47(5):1549-1563.
[23] Rae C M F, Matan N, Cox D C, et al. On the primary creep of CMSX-4 superalloy single crystals[J]. Metallurgical and Materials Transactions A, 2000, 31(9):2219-2228.
[24] Link T, Feller-Kniepmeier M. Shear mechanisms of the γ' phase in single-crystal superalloys and their relation to creep[J]. Metallurgical Transactions A, 1992, 23(1):99-105.
[25] Rae C M F, Matan N, Reed R C. The role of stacking fault shear in the primary creep of
[001] -oriented single crystal superalloys at 750℃ and 750 MPa[J]. Materials Science and Engineering A, 2001, 300(1):125-134.
[26] Ma A, Dye D, Reed R C. A model for the creep deformation behaviour of single-crystal superalloy CMSX-4[J]. Acta Materialia. 2008, 56(2):1657-1670.
[27] Kakehi K. Effect of primary and secondary precipitates on creep strength of Ni-base superalloy single crystals[J]. Materials Science and Engineering A, 2000, 278(1/2):135-141.
[28] Qi D Q, Wang L, Zhao P, et al. Facilitating effect of interfacial grooves on the rafting of nickel-based single crystal superalloy at high temperature[J]. Scripta Materialia, 2019, doi:10.1016/j.scriptamat.2019.04.001
[29] Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT[J]. Acta Materialia, 2005, 53(10):3041-3057.
[30] Knowles D M, Gunturi S. The role of <112> {111} slip in the asymmetric nature of creep of single crystal superalloy CMSX-4[J]. Materials Science and Engineering A, 2002, 328(1/2):223-237.
Outlines

/